BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15116878)

  • 1. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms.
    Chen HJ; Huang SL; Tseng DH
    Environ Technol; 2004 Feb; 25(2):201-10. PubMed ID: 15116878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms.
    Chen HJ; Tseng DH; Huang SL
    Bioresour Technol; 2005 Sep; 96(13):1483-91. PubMed ID: 15939276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability of bacterial surfactants.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Jun; 22(3):585-92. PubMed ID: 21053055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylphenol polyethoxylate removal in a pilot-scale reed bed and phenotypic characterization of the aerobic heterotrophic community.
    Sacco C; Pizzo AM; Tiscione E; Burrini D; Messeri L; Lepri L; Del Bubba M
    Water Environ Res; 2006 Jul; 78(7):754-63. PubMed ID: 16929647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil.
    Fava F; Di Gioia D
    Biotechnol Bioeng; 2001 Jan; 72(2):177-84. PubMed ID: 11114655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.
    Inoue D; Yamazaki Y; Tsutsui H; Sei K; Soda S; Fujita M; Ike M
    Biodegradation; 2012 Apr; 23(2):263-76. PubMed ID: 21850504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient stimulation of sulfolane biodegradation in a contaminated soil from a sour natural gas plant and in a pristine soil.
    Greene EA; Fedorak PM
    Environ Technol; 2001 Jun; 22(6):619-29. PubMed ID: 11482381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater.
    Wenderoth DF; Rosenbrock P; Abraham WR; Pieper DH; Höfle MG
    Microb Ecol; 2003 Aug; 46(2):161-76. PubMed ID: 14708742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria.
    Avila-Arias H; Avellaneda H; Garzón V; Rodríguez G; Arbeli Z; Garcia-Bonilla E; Villegas-Plazas M; Roldan F
    J Appl Microbiol; 2017 Aug; 123(2):401-413. PubMed ID: 28561275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molinate biodegradation in soils: natural attenuation versus bioaugmentation.
    Lopes AR; Danko AS; Manaia CM; Nunes OC
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2691-700. PubMed ID: 22543452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of Triton X-100 and its primary metabolites by a bacterial community isolated from activated sludge.
    Wyrwas B; Dymaczewski Z; Zgoła-Grześkowiak A; Szymański A; Frańska M; Kruszelnicka I; Ginter-Kramarczyk D; Cyplik P; Ławniczak Ł; Chrzanowski Ł
    J Environ Manage; 2013 Oct; 128():292-9. PubMed ID: 23770380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites.
    Lin YW; Guo GL; Hsieh HC; Huang SL
    Bioresour Technol; 2010 Apr; 101(8):2853-9. PubMed ID: 20044249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Sep; 22(5):1007-15. PubMed ID: 21416334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of genetically-engineered bacteria in activated sludge microcosms.
    Dwyer DF; Hooper SW; Rojo F; Timmis KN
    Schriftenr Ver Wasser Boden Lufthyg; 1988; 78():267-76. PubMed ID: 3074483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ bioremediation of organochlorine-pesticide-contaminated microcosm soil and evaluation by gene probe.
    Qureshi A; Mohan M; Kanade GS; Kapley A; Purohit HJ
    Pest Manag Sci; 2009 Jul; 65(7):798-804. PubMed ID: 19360715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel.
    Wyrwas B; Chrzanowski Ł; Ławniczak Ł; Szulc A; Cyplik P; Białas W; Szymański A; Hołderna-Odachowska A
    J Hazard Mater; 2011 Dec; 197():97-103. PubMed ID: 21996621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil.
    Di Gregorio S; Barbafieri M; Lampis S; Sanangelantoni AM; Tassi E; Vallini G
    Chemosphere; 2006 Apr; 63(2):293-9. PubMed ID: 16153689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.