These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 15116960)
1. Direct electrochemistry of xanthine oxidase at a gold electrode modified with single-wall carbon nanotubes. Wang L; Yuan Z Anal Sci; 2004 Apr; 20(4):635-8. PubMed ID: 15116960 [TBL] [Abstract][Full Text] [Related]
2. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate. Wu Y; Hu S Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602 [TBL] [Abstract][Full Text] [Related]
3. Electrochemistry of xanthine oxidase and its interaction with nitric oxide. Zhou H; Xu Y; Chen T; Suzuki I; Li G Anal Sci; 2006 Feb; 22(2):337-40. PubMed ID: 16512435 [TBL] [Abstract][Full Text] [Related]
4. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Wang J; Li M; Shi Z; Li N; Gu Z Anal Chem; 2002 May; 74(9):1993-7. PubMed ID: 12033297 [TBL] [Abstract][Full Text] [Related]
5. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes. Torres AC; Ghica ME; Brett CM Anal Bioanal Chem; 2013 Apr; 405(11):3813-22. PubMed ID: 23263517 [TBL] [Abstract][Full Text] [Related]
6. Study of drug metabolism by xanthine oxidase. Zhao J; He X; Yang N; Sun L; Li G Int J Mol Sci; 2012; 13(4):4873-4879. PubMed ID: 22606015 [TBL] [Abstract][Full Text] [Related]
7. Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. Shan D; Wang YN; Xue HG; Cosnier S; Ding SN Biosens Bioelectron; 2009 Aug; 24(12):3556-61. PubMed ID: 19500969 [TBL] [Abstract][Full Text] [Related]
8. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase. Lin Z; Sun J; Chen J; Guo L; Chen Y; Chen G Anal Chem; 2008 Apr; 80(8):2826-31. PubMed ID: 18315011 [TBL] [Abstract][Full Text] [Related]
9. Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. Villalonga R; Díez P; Eguílaz M; Martínez P; Pingarrón JM ACS Appl Mater Interfaces; 2012 Aug; 4(8):4312-9. PubMed ID: 22801986 [TBL] [Abstract][Full Text] [Related]
10. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Li J; Yu J; Zhao F; Zeng B Anal Chim Acta; 2007 Mar; 587(1):33-40. PubMed ID: 17386750 [TBL] [Abstract][Full Text] [Related]
11. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Cubukçu M; Timur S; Anik U Talanta; 2007 Dec; 74(3):434-9. PubMed ID: 18371660 [TBL] [Abstract][Full Text] [Related]
12. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Devi R; Yadav S; Pundir CS Analyst; 2012 Feb; 137(3):754-9. PubMed ID: 22135777 [TBL] [Abstract][Full Text] [Related]
13. Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Si Y; Park JW; Jung S; Hwang GS; Goh E; Lee HJ Biosens Bioelectron; 2018 Dec; 121():265-271. PubMed ID: 30223102 [TBL] [Abstract][Full Text] [Related]
14. Amperometric detection of superoxide dismutase at cytochrome c-immobilized electrodes: xanthine oxidase and ascorbate oxidase incorporated biopolymer membrane for in-vivo analysis. Gobi KV; Mizutani F Anal Sci; 2001 Jan; 17(1):11-5. PubMed ID: 11993645 [TBL] [Abstract][Full Text] [Related]
15. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Sucheta A; Cammack R; Weiner J; Armstrong FA Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449 [TBL] [Abstract][Full Text] [Related]
16. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase. Muguruma H; Hoshino T; Nowaki K ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366 [TBL] [Abstract][Full Text] [Related]
17. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
18. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Cai C; Chen J Anal Biochem; 2004 Sep; 332(1):75-83. PubMed ID: 15301951 [TBL] [Abstract][Full Text] [Related]
19. Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode. Salimi A; Noorbakhsh A; Ghadermarz M Anal Biochem; 2005 Sep; 344(1):16-24. PubMed ID: 16039977 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro. Wan Y; Qian J; Li Y; Shen Y; Chen Y; Fu G; Xie M Int J Biol Macromol; 2021 Aug; 184():843-856. PubMed ID: 34146563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]