These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15117002)

  • 1. Body-based senses enhance knowledge of directions in large-scale environments.
    Waller D; Loomis JM; Haun DB
    Psychon Bull Rev; 2004 Feb; 11(1):157-63. PubMed ID: 15117002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of body-based sensory information in the acquisition of enduring spatial representations.
    Waller D; Greenauer N
    Psychol Res; 2007 May; 71(3):322-32. PubMed ID: 16953434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial cues do not enhance knowledge of environmental layout.
    Waller D; Loomis JM; Steck SD
    Psychon Bull Rev; 2003 Dec; 10(4):987-93. PubMed ID: 15000550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does path integration contribute to human navigation in large-scale space?
    Anastasiou C; Baumann O; Yamamoto N
    Psychon Bull Rev; 2023 Jun; 30(3):822-842. PubMed ID: 36401122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuo-vestibular interaction: predicting the position of a visual target during passive body rotation.
    Mackrous I; Simoneau M
    Neuroscience; 2011 Nov; 195():45-53. PubMed ID: 21839149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference frames in spatial updating when body-based cues are absent.
    He Q; McNamara TP; Kelly JW
    Mem Cognit; 2018 Jan; 46(1):32-42. PubMed ID: 28755051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisensory integration in the estimation of relative path length.
    Sun HJ; Campos JL; Chan GS
    Exp Brain Res; 2004 Jan; 154(2):246-54. PubMed ID: 14685814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting head movements in humans: Compensation for disturbance from simultaneous body rotations.
    Becker W; Kassubek J; Maurer C; Mergner T
    Hum Mov Sci; 2018 Oct; 61():197-218. PubMed ID: 30189333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of attentional cueing during observational learning to facilitate motor skill acquisition.
    Janelle CM; Champenoy JD; Coombes SA; Mousseau MB
    J Sports Sci; 2003 Oct; 21(10):825-38. PubMed ID: 14620026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations.
    Sturz BR; Kelly DM; Brown MF
    Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active and passive spatial learning in human navigation: acquisition of graph knowledge.
    Chrastil ER; Warren WH
    J Exp Psychol Learn Mem Cogn; 2015 Jul; 41(4):1162-1178. PubMed ID: 25419818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path information effects in visual and proprioceptive spatial learning.
    Yamamoto N; Shelton AL
    Acta Psychol (Amst); 2007 Jul; 125(3):346-60. PubMed ID: 17067542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of gravitational cues and efference copy signals in the rotational updating of memory saccades.
    Klier EM; Angelaki DE; Hess BJ
    J Neurophysiol; 2005 Jul; 94(1):468-78. PubMed ID: 15716372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active and passive spatial learning in human navigation: acquisition of survey knowledge.
    Chrastil ER; Warren WH
    J Exp Psychol Learn Mem Cogn; 2013 Sep; 39(5):1520-37. PubMed ID: 23565781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pointing at objects in other rooms: young children's sensitivity to perspective after walking with and without vision.
    Rider EA; Rieser JJ
    Child Dev; 1988 Apr; 59(2):480-94. PubMed ID: 3359866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neck proprioception compensates for age-related deterioration of vestibular self-motion perception.
    Schweigart G; Chien RD; Mergner T
    Exp Brain Res; 2002 Nov; 147(1):89-97. PubMed ID: 12373373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation.
    Laurens J; Angelaki DE
    Elife; 2017 Oct; 6():. PubMed ID: 29043978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder.
    Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM
    Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.