These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15117188)

  • 41. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays.
    Choi S; Park JK
    Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M
    Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A dynamic microarray device for paired bead-based analysis.
    Teshima T; Ishihara H; Iwai K; Adachi A; Takeuchi S
    Lab Chip; 2010 Sep; 10(18):2443-8. PubMed ID: 20697655
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device.
    Xu JH; Li SW; Tostado C; Lan WJ; Luo GS
    Biomed Microdevices; 2009 Feb; 11(1):243-9. PubMed ID: 18810642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).
    Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O
    Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A control method for steering individual particles inside liquid droplets actuated by electrowetting.
    Walker S; Shapiro B
    Lab Chip; 2005 Dec; 5(12):1404-7. PubMed ID: 16286973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupling confocal fluorescence detection and recirculating microfluidic control for single particle analysis in discrete nanoliter volumes.
    Puleo CM; Yeh HC; Liu KJ; Wang TH
    Lab Chip; 2008 May; 8(5):822-5. PubMed ID: 18432356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice.
    Kenyon SM; Weiss NG; Hayes MA
    Electrophoresis; 2012 Apr; 33(8):1227-35. PubMed ID: 22589099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506).
    Murakami Y; Endo T; Yamamura S; Nagatani N; Takamura Y; Tamiya E
    Anal Biochem; 2004 Nov; 334(1):111-6. PubMed ID: 15464959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microparticle sampling by electrowetting-actuated droplet sweeping.
    Zhao Y; Cho SK
    Lab Chip; 2006 Jan; 6(1):137-44. PubMed ID: 16372081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-particle tracking for DNA tether length monitoring.
    Pouget N; Dennis C; Turlan C; Grigoriev M; Chandler M; Salomé L
    Nucleic Acids Res; 2004 May; 32(9):e73. PubMed ID: 15155821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continuous-flow single-molecule CE with high detection efficiency.
    Schiro PG; Kuyper CL; Chiu DT
    Electrophoresis; 2007 Jul; 28(14):2430-8. PubMed ID: 17577880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow-free transport of cells in microchannels by frequency-modulated ultrasound.
    Manneberg O; Vanherberghen B; Onfelt B; Wiklund M
    Lab Chip; 2009 Mar; 9(6):833-7. PubMed ID: 19255666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.