These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 15117188)
41. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere. Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750 [TBL] [Abstract][Full Text] [Related]
42. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001 [TBL] [Abstract][Full Text] [Related]
43. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays. Choi S; Park JK Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090 [TBL] [Abstract][Full Text] [Related]
44. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341 [TBL] [Abstract][Full Text] [Related]
46. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device. Xu JH; Li SW; Tostado C; Lan WJ; Luo GS Biomed Microdevices; 2009 Feb; 11(1):243-9. PubMed ID: 18810642 [TBL] [Abstract][Full Text] [Related]
47. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Chun H; Chung TD; Kim HC Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785 [TBL] [Abstract][Full Text] [Related]
48. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs). Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091 [TBL] [Abstract][Full Text] [Related]
49. A control method for steering individual particles inside liquid droplets actuated by electrowetting. Walker S; Shapiro B Lab Chip; 2005 Dec; 5(12):1404-7. PubMed ID: 16286973 [TBL] [Abstract][Full Text] [Related]
50. Coupling confocal fluorescence detection and recirculating microfluidic control for single particle analysis in discrete nanoliter volumes. Puleo CM; Yeh HC; Liu KJ; Wang TH Lab Chip; 2008 May; 8(5):822-5. PubMed ID: 18432356 [TBL] [Abstract][Full Text] [Related]
51. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice. Kenyon SM; Weiss NG; Hayes MA Electrophoresis; 2012 Apr; 33(8):1227-35. PubMed ID: 22589099 [TBL] [Abstract][Full Text] [Related]
52. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X; Cooper JM; Monaghan PB; Haswell SJ Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220 [TBL] [Abstract][Full Text] [Related]
53. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183 [TBL] [Abstract][Full Text] [Related]