These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 15117674)

  • 1. Discrete visual samples may control locomotor equilibrium and foot positioning in man.
    Assaiante C; Marchand AR; Amblard B
    J Mot Behav; 1989 Mar; 21(1):72-91. PubMed ID: 15117674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential sensitivity to static visual cues in the control of postural equilibrium in man.
    Crémieux J; Mesure S
    Percept Mot Skills; 1994 Feb; 78(1):67-74. PubMed ID: 8177690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual control of locomotion in Parkinson's disease.
    Azulay JP; Mesure S; Amblard B; Blin O; Sangla I; Pouget J
    Brain; 1999 Jan; 122 ( Pt 1)():111-20. PubMed ID: 10050899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral visual cues affect minimum-foot-clearance during overground locomotion.
    Graci V; Elliott DB; Buckley JG
    Gait Posture; 2009 Oct; 30(3):370-4. PubMed ID: 19628392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual contribution to human standing balance during support surface tilts.
    Assländer L; Hettich G; Mergner T
    Hum Mov Sci; 2015 Jun; 41():147-64. PubMed ID: 25816794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation.
    Sun HJ; Campos JL; Young M; Chan GS; Ellard CG
    Perception; 2004; 33(1):49-65. PubMed ID: 15035328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of visual information in control of a constrained locomotor task.
    Laurent M; Thomson JA
    J Mot Behav; 1988 Mar; 20(1):17-37. PubMed ID: 15075130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension.
    Graci V
    Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual cues and attention demand in locomotor positioning.
    Bardy BG; Laurent M
    Percept Mot Skills; 1991 Jun; 72(3 Pt 1):915-26. PubMed ID: 1891329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase.
    Patla AE; Greig M
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):110-4. PubMed ID: 16413969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of visual feedback sampling on obstacle crossing behavior in people with Parkinson's disease.
    Vitório R; Lirani-Silva E; Barbieri FA; Raile V; Stella F; Gobbi LT
    Gait Posture; 2013 Jun; 38(2):330-4. PubMed ID: 23347768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of peripheral visual cues in online visual guidance of locomotion.
    Marigold DS
    Exerc Sport Sci Rev; 2008 Jul; 36(3):145-51. PubMed ID: 18580295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stroboscopic visual training improves information encoding in short-term memory.
    Appelbaum LG; Cain MS; Schroeder JE; Darling EF; Mitroff SR
    Atten Percept Psychophys; 2012 Nov; 74(8):1681-91. PubMed ID: 22810559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential approach to strategies of segmental stabilisation in postural control.
    Isableu B; Ohlmann T; Crémieux J; Amblard B
    Exp Brain Res; 2003 May; 150(2):208-21. PubMed ID: 12677318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.