BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15117754)

  • 1. Identification of DNA regulatory motifs using Bayesian variable selection.
    Tadesse MG; Vannucci M; Liò P
    Bioinformatics; 2004 Nov; 20(16):2553-61. PubMed ID: 15117754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regression trees for regulatory element identification.
    Phuong TM; Lee D; Lee KH
    Bioinformatics; 2004 Mar; 20(5):750-7. PubMed ID: 14751992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian variable selection for the analysis of microarray data with censored outcomes.
    Sha N; Tadesse MG; Vannucci M
    Bioinformatics; 2006 Sep; 22(18):2262-8. PubMed ID: 16845144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RSIR: regularized sliced inverse regression for motif discovery.
    Zhong W; Zeng P; Ma P; Liu JS; Zhu Y
    Bioinformatics; 2005 Nov; 21(22):4169-75. PubMed ID: 16166098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites.
    Qin ZS; McCue LA; Thompson W; Mayerhofer L; Lawrence CE; Liu JS
    Nat Biotechnol; 2003 Apr; 21(4):435-9. PubMed ID: 12627170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining pattern discovery and discriminant analysis to predict gene co-regulation.
    Simonis N; Wodak SJ; Cohen GN; van Helden J
    Bioinformatics; 2004 Oct; 20(15):2370-9. PubMed ID: 15073004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding non-unique oligonucleotide hybridization experiments of targets related by a phylogenetic tree.
    Schliep A; Rahmann S
    Bioinformatics; 2006 Jul; 22(14):e424-30. PubMed ID: 16873503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary techniques of clustering and composite pattern analysis to Saccharomyces cerevisiae gene expression.
    Magusin A
    Appl Bioinformatics; 2003; 2(3 Suppl):S37-46. PubMed ID: 15130815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian detection of periodic mRNA time profiles without use of training examples.
    Andersson CR; Isaksson A; Gustafsson MG
    BMC Bioinformatics; 2006 Feb; 7():63. PubMed ID: 16469110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors.
    Beal MJ; Falciani F; Ghahramani Z; Rangel C; Wild DL
    Bioinformatics; 2005 Feb; 21(3):349-56. PubMed ID: 15353451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic algorithm for the detection of new cis-regulatory modules in sets of coregulated genes.
    Aerts S; Van Loo P; Moreau Y; De Moor B
    Bioinformatics; 2004 Aug; 20(12):1974-6. PubMed ID: 15044242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BioOptimizer: a Bayesian scoring function approach to motif discovery.
    Jensen ST; Liu JS
    Bioinformatics; 2004 Jul; 20(10):1557-64. PubMed ID: 14962923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor binding site identification using the self-organizing map.
    Mahony S; Hendrix D; Golden A; Smith TJ; Rokhsar DS
    Bioinformatics; 2005 May; 21(9):1807-14. PubMed ID: 15647296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances to Bayesian network inference for generating causal networks from observational biological data.
    Yu J; Smith VA; Wang PP; Hartemink AJ; Jarvis ED
    Bioinformatics; 2004 Dec; 20(18):3594-603. PubMed ID: 15284094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for identifying transcription factor binding sites in yeast.
    Tsai HK; Huang GT; Chou MY; Lu HH; Li WH
    Bioinformatics; 2006 Jul; 22(14):1675-81. PubMed ID: 16644789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches.
    Romer KA; Kayombya GR; Fraenkel E
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W217-20. PubMed ID: 17584794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy.
    Hu G; Llinás M; Li J; Preiser PR; Bozdech Z
    BMC Bioinformatics; 2007 Sep; 8():350. PubMed ID: 17880708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.