BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 15117940)

  • 1. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gbetagamma and tubulin.
    Popova JS; Rasenick MM
    J Biol Chem; 2004 Jul; 279(29):30410-8. PubMed ID: 15117940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G beta gamma mediates the interplay between tubulin dimers and microtubules in the modulation of Gq signaling.
    Popova JS; Rasenick MM
    J Biol Chem; 2003 Sep; 278(36):34299-308. PubMed ID: 12807915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylinositol 4,5-bisphosphate modifies tubulin participation in phospholipase Cbeta1 signaling.
    Popova JS; Greene AK; Wang J; Rasenick MM
    J Neurosci; 2002 Mar; 22(5):1668-78. PubMed ID: 11880496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RACK1 regulates specific functions of Gbetagamma.
    Chen S; Dell EJ; Lin F; Sai J; Hamm HE
    J Biol Chem; 2004 Apr; 279(17):17861-8. PubMed ID: 14963031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive internalization of G protein-coupled receptors and G proteins via clathrin-independent endocytosis.
    Scarselli M; Donaldson JG
    J Biol Chem; 2009 Feb; 284(6):3577-85. PubMed ID: 19033440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pasteurella multocida toxin activates Gbetagamma dimers of heterotrimeric G proteins.
    Preuss I; Kurig B; Nürnberg B; Orth JH; Aktories K
    Cell Signal; 2009 Apr; 21(4):551-8. PubMed ID: 19135527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of β- and α2-adrenergic receptors stimulate tubulin polymerization and promote the association of Gβγ with microtubules in cultured NIH3T3 cells.
    Sierra-Fonseca JA; Bracamontes C; Saldecke J; Das S; Roychowdhury S
    Biochem Biophys Res Commun; 2018 Sep; 503(1):102-108. PubMed ID: 29852176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis.
    Delaney KA; Murph MM; Brown LM; Radhakrishna H
    J Biol Chem; 2002 Sep; 277(36):33439-46. PubMed ID: 12093817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gbetagamma dimers from Galphaq and Galphai2.
    Goel R; Phillips-Mason PJ; Gardner A; Raben DM; Baldassare JJ
    J Biol Chem; 2004 Feb; 279(8):6701-10. PubMed ID: 14668344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of membrane components in the binding of proteins to membrane surfaces.
    Philip F; Scarlata S
    Biochemistry; 2004 Sep; 43(37):11691-700. PubMed ID: 15362853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
    Samaradivakara S; Kankanamge D; Senarath K; Ratnayake K; Karunarathne A
    Biochem Biophys Res Commun; 2018 Sep; 503(1):165-170. PubMed ID: 29864421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gbetagamma signaling and Ca2+ mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors.
    Chan AS; Wong YH
    Cell Signal; 2004 Jul; 16(7):823-36. PubMed ID: 15115661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits.
    Rusinova R; Mirshahi T; Logothetis DE
    J Biol Chem; 2007 Nov; 282(47):34019-30. PubMed ID: 17872944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G protein activation is prerequisite for functional coupling between Galpha/Gbetagamma and tubulin/microtubules.
    Roychowdhury S; Martinez L; Salgado L; Das S; Rasenick MM
    Biochem Biophys Res Commun; 2006 Feb; 340(2):441-8. PubMed ID: 16380086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galphaq-coupled receptor internalization specifically induced by Galphaq signaling. Regulation by EBP50.
    Rochdi MD; Parent JL
    J Biol Chem; 2003 May; 278(20):17827-37. PubMed ID: 12626493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G protein betagamma subunits interact with alphabeta- and gamma-tubulin and play a role in microtubule assembly in PC12 cells.
    Montoya V; Gutierrez C; Najera O; Leony D; Varela-Ramirez A; Popova J; Rasenick MM; Das S; Roychowdhury S
    Cell Motil Cytoskeleton; 2007 Dec; 64(12):936-50. PubMed ID: 17705289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the muscarinic acetylcholine receptor M₂ subtype with G protein Gα(i/o) isotypes and Gβγ subunits as studied with the maltose-binding protein-M₂-Gα(i/o) fusion proteins expressed in Escherichia coli.
    Ichiyama S; Nemoto R; Tanabe H; Haga T
    J Biochem; 2014 Nov; 156(5):259-72. PubMed ID: 24881046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galphai1 and Galphai3 differentially interact with, and regulate, the G protein-activated K+ channel.
    Ivanina T; Varon D; Peleg S; Rishal I; Porozov Y; Dessauer CW; Keren-Raifman T; Dascal N
    J Biol Chem; 2004 Apr; 279(17):17260-8. PubMed ID: 14963032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.