These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15117947)
1. Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein. Hibbs RE; Talley TT; Taylor P J Biol Chem; 2004 Jul; 279(27):28483-91. PubMed ID: 15117947 [TBL] [Abstract][Full Text] [Related]
2. Influence of agonists and antagonists on the segmental motion of residues near the agonist binding pocket of the acetylcholine-binding protein. Hibbs RE; Radic Z; Taylor P; Johnson DA J Biol Chem; 2006 Dec; 281(51):39708-18. PubMed ID: 17068341 [TBL] [Abstract][Full Text] [Related]
3. Reversibly bound and covalently attached ligands induce conformational changes in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase. Shi J; Boyd AE; Radic Z; Taylor P J Biol Chem; 2001 Nov; 276(45):42196-204. PubMed ID: 11517229 [TBL] [Abstract][Full Text] [Related]
4. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. Valeva A; Weisser A; Walker B; Kehoe M; Bayley H; Bhakdi S; Palmer M EMBO J; 1996 Apr; 15(8):1857-64. PubMed ID: 8617232 [TBL] [Abstract][Full Text] [Related]
5. Identification of an agonist-induced conformational change occurring adjacent to the ligand-binding pocket of the M(3) muscarinic acetylcholine receptor. Han SJ; Hamdan FF; Kim SK; Jacobson KA; Bloodworth LM; Li B; Wess J J Biol Chem; 2005 Oct; 280(41):34849-58. PubMed ID: 16093246 [TBL] [Abstract][Full Text] [Related]
6. Ligand-induced conformational changes in the acetylcholine-binding protein analyzed by hydrogen-deuterium exchange mass spectrometry. Shi J; Koeppe JR; Komives EA; Taylor P J Biol Chem; 2006 Apr; 281(17):12170-7. PubMed ID: 16484218 [TBL] [Abstract][Full Text] [Related]
7. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Narazaki R; Maruyama T; Otagiri M Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146 [TBL] [Abstract][Full Text] [Related]
8. Site-specific chemical modification of interleukin-1 beta by acrylodan at cysteine 8 and lysine 103. Yem AW; Epps DE; Mathews WR; Guido DM; Richard KA; Staite ND; Deibel MR J Biol Chem; 1992 Feb; 267(5):3122-8. PubMed ID: 1531337 [TBL] [Abstract][Full Text] [Related]
9. Structural dynamics of the acetylcholine binding protein: hydrodynamic and fluorescence anisotropy decay analyses. Hibbs RE; Johnson DA; Shi J; Taylor P J Mol Neurosci; 2006; 30(1-2):73-4. PubMed ID: 17192634 [TBL] [Abstract][Full Text] [Related]
10. Bimane- and acrylodan-labeled S100 proteins. Role of cysteines-85 alpha and -84 beta in the conformation and calcium binding properties of S100 alpha alpha and S100b (beta beta) proteins. Baudier J; Glasser N; Duportail G Biochemistry; 1986 Nov; 25(22):6934-41. PubMed ID: 3801403 [TBL] [Abstract][Full Text] [Related]
11. Drysdalin, a snake neurotoxin with higher affinity for soluble acetylcholine binding protein from Aplysia californica than from Lymnaea stagnalis. Chandna R; Kaczanowska K; Taylor P; Kini RM Toxicon; 2020 Nov; 187():86-92. PubMed ID: 32889025 [TBL] [Abstract][Full Text] [Related]
12. Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone: topology in lipid membranes. Anderluh G; Barlic A; Podlesek Z; Macek P; Pungercar J; Gubensek F; Zecchini ML; Serra MD; Menestrina G Eur J Biochem; 1999 Jul; 263(1):128-36. PubMed ID: 10429196 [TBL] [Abstract][Full Text] [Related]
13. Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase. Shi J; Radic' Z; Taylor P J Biol Chem; 2002 Nov; 277(45):43301-8. PubMed ID: 12196517 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Schindel C; Zitzer A; Schulte B; Gerhards A; Stanley P; Hughes C; Koronakis V; Bhakdi S; Palmer M Eur J Biochem; 2001 Feb; 268(3):800-8. PubMed ID: 11168421 [TBL] [Abstract][Full Text] [Related]
15. A unified view of the role of electrostatic interactions in modulating the gating of Cys loop receptors. Xiu X; Hanek AP; Wang J; Lester HA; Dougherty DA J Biol Chem; 2005 Dec; 280(50):41655-66. PubMed ID: 16216879 [TBL] [Abstract][Full Text] [Related]
16. Calcium-induced conformational change in cardiac troponin C studied by fluorescence probes attached to Cys-84. Dong WJ; Cheung HC Biochim Biophys Acta; 1996 Jul; 1295(2):139-46. PubMed ID: 8695639 [TBL] [Abstract][Full Text] [Related]
17. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein. Lundgren JS; Salins LL; Kaneva I; Daunert S Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric structural motions of the homomeric alpha7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation. Henchman RH; Wang HL; Sine SM; Taylor P; McCammon JA Biophys J; 2003 Nov; 85(5):3007-18. PubMed ID: 14581202 [TBL] [Abstract][Full Text] [Related]
19. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation. McLaughlin JT; Hawrot E; Yellen G Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):765-9. PubMed ID: 7575408 [TBL] [Abstract][Full Text] [Related]
20. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Le Novère N; Grutter T; Changeux JP Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3210-5. PubMed ID: 11867716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]