These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15118158)

  • 1. Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei.
    Fridlind AM; Ackerman AS; Jensen EJ; Heymsfield AJ; Poellot MR; Stevens DE; Wang D; Miloshevich LM; Baumgardner D; Lawson RP; Wilson JC; Flagan RC; Seinfeld JH; Jonsson HH; VanReken TM; Varutbangkul V; Rissman TA
    Science; 2004 Apr; 304(5671):718-22. PubMed ID: 15118158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C.
    Rosenfeld D; Woodley WL
    Nature; 2000 May; 405(6785):440-2. PubMed ID: 10839535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic control of anvil cloud amount.
    Bony S; Stevens B; Coppin D; Becker T; Reed KA; Voigt A; Medeiros B
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8927-32. PubMed ID: 27412863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.
    Abbatt JP; Benz S; Cziczo DJ; Kanji Z; Lohmann U; Möhler O
    Science; 2006 Sep; 313(5794):1770-3. PubMed ID: 16946035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications.
    Sassen K
    Science; 1992 Jul; 257(5069):516-9. PubMed ID: 17778684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarifying the dominant sources and mechanisms of cirrus cloud formation.
    Cziczo DJ; Froyd KD; Hoose C; Jensen EJ; Diao M; Zondlo MA; Smith JB; Twohy CH; Murphy DM
    Science; 2013 Jun; 340(6138):1320-4. PubMed ID: 23661645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique.
    Russell PB; Morley BM; Livingston JM; Grams GW; Patterson EM
    Appl Opt; 1982 May; 21(9):1541-53. PubMed ID: 20389895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of humidity above stratiform clouds on indirect aerosol climate forcing.
    Ackerman AS; Kirkpatrick MP; Stevens DE; Toon OB
    Nature; 2004 Dec; 432(7020):1014-7. PubMed ID: 15616559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways.
    Webster CR; Heymsfield AJ
    Science; 2003 Dec; 302(5651):1742-5. PubMed ID: 14657493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.
    Gao RS; Popp PJ; Fahey DW; Marcy TP; Herman RL; Weinstock EM; Baumgardner DG; Garrett TJ; Rosenlof KH; Thompson TL; Bui PT; Ridley BA; Wofsy SC; Toon OB; Tolbert MA; Kärcher B; Peter T; Hudson PK; Weinheimer AJ; Heymsfield AJ
    Science; 2004 Jan; 303(5657):516-20. PubMed ID: 14739457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquity and impact of thin mid-level clouds in the tropics.
    Bourgeois Q; Ekman AM; Igel MR; Krejci R
    Nat Commun; 2016 Aug; 7():12432. PubMed ID: 27530236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensification of Pacific storm track linked to Asian pollution.
    Zhang R; Li G; Fan J; Wu DL; Molina MJ
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5295-9. PubMed ID: 17374719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeding cumulus in Florida: new 1970 results.
    Simpson J; Woodley WL
    Science; 1971 Apr; 172(3979):117-26. PubMed ID: 17735215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining In Situ and Satellite Observations to Understand the Vertical Structure of Tropical Anvil Cloud Microphysical Properties During the TC4 Experiment.
    Yue Q; Jiang JH; Heymsfield A; Liou KN; Gu Y; Sinha A
    Earth Space Sci; 2020 Apr; 7(4):e2020EA001147. PubMed ID: 32715026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
    Adler G; Koop T; Haspel C; Taraniuk I; Moise T; Koren I; Heiblum RH; Rudich Y
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20414-9. PubMed ID: 24297908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection.
    Homeyer CR; McAuliffe JD; Bedka KM
    J Atmos Sci; 2017 May; 74(5):1617-1633. PubMed ID: 33958814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of rain evaporation and continental convection in the tropical water cycle.
    Worden J; Noone D; Bowman K;
    Nature; 2007 Feb; 445(7127):528-32. PubMed ID: 17268467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study of the remote sensing of optical and microphysical properties of cirrus clouds from satellite IR measurements.
    Xu L; Zhang J
    Appl Opt; 1995 May; 34(15):2724-36. PubMed ID: 21052418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.