BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15118847)

  • 1. Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48.
    Koma D; Sakashita Y; Kubota K; Fujii Y; Hasumi F; Chung SY; Kubo M
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):92-9. PubMed ID: 15118847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A.
    Koma D; Sakashita Y; Kubota K; Fujii Y; Hasumi F; Chung SY; Kubo M
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1590-3. PubMed ID: 12913308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of n-alkylcyclohexanes by co-oxidation via multiple pathways in Acinetobacter sp. ODDK71.
    Koma D; Hasumi F; Chung SY; Kubo M
    J Biosci Bioeng; 2003; 95(6):641-4. PubMed ID: 16233473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1.
    Yi T; Lee EH; Ahn YG; Hwang GS; Cho KS
    J Hazard Mater; 2011 Jul; 191(1-3):393-6. PubMed ID: 21571424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway.
    Chatterjee S; Dutta TK
    Chemosphere; 2008 Jan; 70(5):933-41. PubMed ID: 17669462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge.
    Zhu SN; Liu DQ; Fan L; Ni JR
    J Hazard Mater; 2008 Dec; 160(2-3):289-94. PubMed ID: 18420344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic biotransformation of decalin (decahydronaphthalene) by Rhodococcus spp.
    Kirkwood KM; Chernik P; Foght JM; Gray MR
    Biodegradation; 2008 Nov; 19(6):785-94. PubMed ID: 18299805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp.
    Sayavedra-Soto LA; Chang WN; Lin TK; Ho CL; Liu HS
    Biotechnol Prog; 2006; 22(5):1368-73. PubMed ID: 17022676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of biodegradation of dibenzoate plasticizers.
    Kermanshahi pour A; Cooper DG; Mamer OA; Maric M; Nicell JA
    Chemosphere; 2009 Sep; 77(2):258-63. PubMed ID: 19665165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of 3-N-trimethylamino-1-propanol-degrading Rhodococcus sp. strain A2.
    Mohamed Ahmed IA; Arima J; Ichiyanagi T; Sakuno E; Mori N
    FEMS Microbiol Lett; 2009 Jun; 296(2):219-25. PubMed ID: 19486158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium.
    Zeinali M; Vossoughi M; Ardestani SK
    J Appl Microbiol; 2008 Aug; 105(2):398-406. PubMed ID: 18312570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of biphenyl by Mycobacterium sp. strain PYR-1.
    Moody JD; Doerge DR; Freeman JP; Cerniglia CE
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):364-9. PubMed ID: 11935189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.
    Moreno Horn M; Garbe LA; Tressl R; Adrian L; Görisch H
    Arch Microbiol; 2003 Apr; 179(4):234-41. PubMed ID: 12605291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1.
    Lee EH; Cho KS
    Chemosphere; 2008 Apr; 71(9):1738-44. PubMed ID: 18289631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel pathway for the biodegradation of gamma-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12.
    Manickam N; Misra R; Mayilraj S
    J Appl Microbiol; 2007 Jun; 102(6):1468-78. PubMed ID: 17578411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolites from the biodegradation of 1,6-hexanediol dibenzoate, a potential green plasticizer, by Rhodococcus rhodochrous.
    Pour AK; Mamer OA; Cooper DG; Maric M; Nicell JA
    J Mass Spectrom; 2009 May; 44(5):662-71. PubMed ID: 19125399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT).
    Bajaj A; Mayilraj S; Mudiam MK; Patel DK; Manickam N
    Bioresour Technol; 2014 Sep; 167():398-406. PubMed ID: 25000395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolism of Mesamoll, a technical formulation of alkylsulfonic acid phenyl esters, by two strains of Rhodococcus rhodochrous.
    Hintner JP; Fortnagel P; Franke S; Francke W; Schmidt S
    Res Microbiol; 2005; 156(5-6):656-62. PubMed ID: 15921896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of methylthio-s-triazines by Rhodococcus sp. strain FJ1117YT, and production of the corresponding methylsulfinyl, methylsulfonyl and hydroxy analogues.
    Fujii K; Takagi K; Hiradate S; Iwasaki A; Harada N
    Pest Manag Sci; 2007 Mar; 63(3):254-60. PubMed ID: 17245693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.