These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15119612)

  • 1. Electromagnetic design of an all-diffractive millimeter-wave imaging system.
    Chen C; Shi S; Prather DW
    Appl Opt; 2004 Apr; 43(12):2431-8. PubMed ID: 15119612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of diffractive singlets for monochromatic imaging.
    Buralli DA; Morris GM
    Appl Opt; 1991 Jun; 30(16):2151-8. PubMed ID: 20700190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a wide field diffractive landscape lens.
    Buralli DA; Morris GM
    Appl Opt; 1989 Sep; 28(18):3950-9. PubMed ID: 20555804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of an off-axis see-through display based on a dynamic phase correction approach.
    Beuret M; Twardowski P; Fontaine J
    Opt Express; 2011 Sep; 19(20):19688-701. PubMed ID: 21996911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic analysis of axially symmetric diffractive lenses with the method of moments.
    Prather DW; Shi S
    J Opt Soc Am A Opt Image Sci Vis; 2000 Apr; 17(4):729-39. PubMed ID: 10757180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of two- and three-element diffractive Keplerian telescopes.
    Buralli DA; Morris GM
    Appl Opt; 1992 Jan; 31(1):38-43. PubMed ID: 20717368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; Gérard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic optimization of multilevel diffractive elements by use of the wavelet transform.
    Prather DW; Shi S; Mackie D
    Opt Lett; 2000 Jul; 25(14):1004-6. PubMed ID: 18064254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband imaging with one planar diffractive lens.
    Mohammad N; Meem M; Shen B; Wang P; Menon R
    Sci Rep; 2018 Feb; 8(1):2799. PubMed ID: 29434257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monochromatic primary aberrations of a diffractive lens on a finite substrate.
    Dutta U; Hazra L
    Appl Opt; 2010 Jun; 49(18):3613-21. PubMed ID: 20563217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.
    Zhang F; Zhu J; Song Q; Yue W; Liu J; Wang J; Situ G; Huang H
    Appl Opt; 2015 Oct; 54(30):8891-8. PubMed ID: 26560376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of frequency dependence and focusing performance of diffractive lens.
    Dou W
    Opt Express; 2002 Sep; 10(19):1018-27. PubMed ID: 19451959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the see-saw method to all refracting optical systems.
    Rosete-Aguilar M
    Appl Opt; 1996 Apr; 35(10):1659-68. PubMed ID: 21085287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seidel aberrations of the Gabor superlens.
    Hamilton Shepard R
    Appl Opt; 2014 Feb; 53(5):915-22. PubMed ID: 24663272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficiently-designed wideband single-metalens with high-efficiency and wide-angle focusing for passive millimeter-wave focal plane array imaging.
    Chu H; Qi J; Qiu J
    Opt Express; 2020 Feb; 28(3):3823-3834. PubMed ID: 32122044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field stitching algorithm for the analysis of electrically large diffractive optical elements.
    Prather DW; Shi S; Bergey JS
    Opt Lett; 1999 Mar; 24(5):273-5. PubMed ID: 18071477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-harmonic diffractive lens color compensation.
    Wang Z; Kim Y; Milster TD
    Appl Opt; 2021 Jul; 60(19):D73-D82. PubMed ID: 34263829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient computation of 2D point-spread functions for diffractive lenses.
    Ayazgok S; Oktem FS
    Appl Opt; 2020 Jan; 59(2):445-451. PubMed ID: 32225335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.