These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15119624)

  • 1. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2545-54. PubMed ID: 15119624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2532-44. PubMed ID: 15119623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient optical trapping with cylindrical vector beams.
    Moradi H; Shahabadi V; Madadi E; Karimi E; Hajizadeh F
    Opt Express; 2019 Mar; 27(5):7266-7276. PubMed ID: 30876293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric.
    Neves AA; Fontes A; Pozzo Lde Y; de Thomaz AA; Chillce E; Rodriguez E; Barbosa LC; Cesar CL
    Opt Express; 2006 Dec; 14(26):13101-6. PubMed ID: 19532206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on the axis of a laser beam.
    Chevaillier JP; Fabre J; Gréhan G; Gouesbet G
    Appl Opt; 1990 Mar; 29(9):1293-8. PubMed ID: 20562995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.
    Xu F; Ren KF; Cai X
    Appl Opt; 2006 Jul; 45(20):4990-9. PubMed ID: 16807610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of trapping force on metallic mie particles.
    Ke PC; Gu M
    Appl Opt; 1999 Jan; 38(1):160-7. PubMed ID: 18305599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2010 Nov; 1(5):1284-1301. PubMed ID: 21258549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination.
    Han Y; Gréhan G; Gouesbet G
    Appl Opt; 2003 Nov; 42(33):6621-9. PubMed ID: 14658463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions.
    Doicu A; Wriedt T
    Appl Opt; 1997 May; 36(13):2971-8. PubMed ID: 18253301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of reverse radiation pressure by generalized Lorenz-Mie theory.
    Ren KF; Gréhan G; Gouesbet G
    Appl Opt; 1996 May; 35(15):2702-10. PubMed ID: 21085418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics.
    Boyde L; Chalut KJ; Guck J
    Appl Opt; 2011 Mar; 50(7):1023-33. PubMed ID: 21364726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams.
    Li ZJ; Li S; Li HY; Qu T; Shang QC
    J Opt Soc Am A Opt Image Sci Vis; 2021 May; 38(5):616-627. PubMed ID: 33983266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin angular momentum transfer from TEM(00) focused Gaussian beams to negative refractive index spherical particles.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2011 Aug; 2(8):2354-63. PubMed ID: 21833372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers.
    Li X; Zheng H; Yuen CH; Du J; Chen J; Lin Z; Ng J
    Opt Express; 2021 Aug; 29(16):25377-25387. PubMed ID: 34614870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical trapping map of dielectric spheres.
    Muradoglu M; Ng TW
    Appl Opt; 2013 May; 52(15):3500-9. PubMed ID: 23736236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation force exerted on a sphere by focused Laguerre-Gaussian beams.
    Yu H; She W
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jan; 32(1):130-42. PubMed ID: 26366497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward scattering of a Gaussian beam by a nonabsorbing sphere.
    Hodges JT; Gréhan G; Gouesbet G; Presser C
    Appl Opt; 1995 Apr; 34(12):2120-32. PubMed ID: 21037758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2011 Jul; 2(7):1893-906. PubMed ID: 21750767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.