These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15119774)

  • 1. A novel principle of attenuation for the development of new generation live flavivirus vaccines.
    Kofler RM; Heinz FX; Mandl CW
    Arch Virol Suppl; 2004; (18):191-200. PubMed ID: 15119774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers.
    Mandl CW
    Viral Immunol; 2004; 17(4):461-72. PubMed ID: 15671744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine.
    He Y; Wang X; Guo J; Mao L; Zhang S; Hu T; Wang M; Jia R; Zhu D; Liu M; Zhao X; Yang Q; Wu Y; Zhang S; Huang J; Mao S; Ou X; Gao Q; Sun D; Liu Y; Zhang L; Yu Y; Cheng A; Chen S
    Front Immunol; 2021; 12():694959. PubMed ID: 34421904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking live flavivirus immunization with a noninfectious RNA vaccine.
    Kofler RM; Aberle JH; Aberle SW; Allison SL; Heinz FX; Mandl CW
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1951-6. PubMed ID: 14769933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis.
    Lai CJ; Monath TP
    Adv Virus Res; 2003; 61():469-509. PubMed ID: 14714441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence.
    Kofler RM; Heinz FX; Mandl CW
    J Virol; 2002 Apr; 76(7):3534-43. PubMed ID: 11884577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flaviviruses and flavivirus vaccines.
    Heinz FX; Stiasny K
    Vaccine; 2012 Jun; 30(29):4301-6. PubMed ID: 22682286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live flavivirus vaccines: reasons for caution.
    Seligman SJ; Gould EA
    Lancet; 2004 Jun; 363(9426):2073-5. PubMed ID: 15207960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available.
    Ishikawa T; Yamanaka A; Konishi E
    Vaccine; 2014 Mar; 32(12):1326-37. PubMed ID: 24486372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses.
    Widman DG; Frolov I; Mason PW
    Adv Virus Res; 2008; 72():77-126. PubMed ID: 19081489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Attenuating Mutations: Tools for a New Vaccine Design against Flaviviruses.
    Khou C; Pardigon N
    Intervirology; 2017; 60(1-2):8-18. PubMed ID: 28869941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Flaviviruses].
    Ishikawa T; Konishi E
    Uirusu; 2011 Dec; 61(2):221-38. PubMed ID: 22916569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavivirus DNA vaccines: current status and potential.
    Chang GJ; Davis BS; Hunt AR; Holmes DA; Kuno G
    Ann N Y Acad Sci; 2001 Dec; 951():272-85. PubMed ID: 11797784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.
    Mandl CW; Holzmann H; Meixner T; Rauscher S; Stadler PF; Allison SL; Heinz FX
    J Virol; 1998 Mar; 72(3):2132-40. PubMed ID: 9499069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-based control of tick-borne flavivirus neuropathogenesis: Challenges and perspectives.
    Teterina NL; Maximova OA; Kenney H; Liu G; Pletnev AG
    Antiviral Res; 2016 Mar; 127():57-67. PubMed ID: 26794396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development.
    Doets K; Pijlman GP
    J Virol; 2024 Jul; 98(7):e0010023. PubMed ID: 38808973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C.
    Kofler RM; Leitner A; O'Riordain G; Heinz FX; Mandl CW
    J Virol; 2003 Jan; 77(1):443-51. PubMed ID: 12477849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traditional and novel approaches to flavivirus vaccines.
    Pugachev KV; Guirakhoo F; Trent DW; Monath TP
    Int J Parasitol; 2003 May; 33(5-6):567-82. PubMed ID: 12782056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in flavivirus antiviral drug discovery and vaccine development.
    Ray D; Shi PY
    Recent Pat Antiinfect Drug Discov; 2006 Jan; 1(1):45-55. PubMed ID: 18221133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant vector derived from live attenuated measles virus: potential for flavivirus vaccines.
    Brandler S; Tangy F
    Comp Immunol Microbiol Infect Dis; 2008 Mar; 31(2-3):271-91. PubMed ID: 17869338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.