BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15120254)

  • 1. Vascular-targeted nanoparticles for molecular imaging and therapy.
    Guccione S; Li KC; Bednarski MD
    Methods Enzymol; 2004; 386():219-36. PubMed ID: 15120254
    [No Abstract]   [Full Text] [Related]  

  • 2. Cancer research. Nanoparticles cut tumors' supply lines.
    Couzin J
    Science; 2002 Jun; 296(5577):2314-5. PubMed ID: 12089416
    [No Abstract]   [Full Text] [Related]  

  • 3. Tumor regression by targeted gene delivery to the neovasculature.
    Hood JD; Bednarski M; Frausto R; Guccione S; Reisfeld RA; Xiang R; Cheresh DA
    Science; 2002 Jun; 296(5577):2404-7. PubMed ID: 12089446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined vascular targeted imaging and therapy: a paradigm for personalized treatment.
    Li KC; Guccione S; Bednarski MD
    J Cell Biochem Suppl; 2002; 39():65-71. PubMed ID: 12552604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 4 - Applications of nanotechnology in molecular imaging of the brain.
    McAteer MA; Choudhury RP
    Prog Brain Res; 2009; 180():72-96. PubMed ID: 20302829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relation between vascular permeability and the process of demyelination in experimental allergic encephalomyelitis].
    Serban M; Matei M
    Stud Cercet Neurol; 1969; 14(4):279-83. PubMed ID: 5345232
    [No Abstract]   [Full Text] [Related]  

  • 7. Combining nanotechnology with current biomedical knowledge for the vascular imaging and treatment of atherosclerosis.
    Slevin M; Badimon L; Grau-Olivares M; Ramis M; Sendra J; Morrison M; Krupinski J
    Mol Biosyst; 2010 Mar; 6(3):444-50. PubMed ID: 20174673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional optical imaging of angiogenesis in animal models.
    Roberts RL; Lin PC
    Methods Enzymol; 2004; 386():105-22. PubMed ID: 15120248
    [No Abstract]   [Full Text] [Related]  

  • 9. Impact of nanotechnology in breast cancer.
    Haq AI; Zabkiewicz C; Grange P; Arya M
    Expert Rev Anticancer Ther; 2009 Aug; 9(8):1021-4. PubMed ID: 19671020
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles.
    Schmieder AH; Winter PM; Caruthers SD; Harris TD; Williams TA; Allen JS; Lacy EK; Zhang H; Scott MJ; Hu G; Robertson JD; Wickline SA; Lanza GM
    Magn Reson Med; 2005 Mar; 53(3):621-7. PubMed ID: 15723405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure.
    Ferretti S; Allegrini PR; O'Reilly T; Schnell C; Stumm M; Wartmann M; Wood J; McSheehy PM
    Clin Cancer Res; 2005 Nov; 11(21):7773-84. PubMed ID: 16278399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted delivery of mutant Raf kinase to neovessels causes tumor regression.
    Hood JD; Cheresh DA
    Cold Spring Harb Symp Quant Biol; 2002; 67():285-91. PubMed ID: 12858551
    [No Abstract]   [Full Text] [Related]  

  • 13. In vivo characterization of tumor and tumor vascular network using multi-modal imaging approach.
    Kalchenko V; Madar-Balakirski N; Meglinski I; Harmelin A
    J Biophotonics; 2011 Sep; 4(9):645-9. PubMed ID: 21714099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe.
    Geninatti Crich S; Bussolati B; Tei L; Grange C; Esposito G; Lanzardo S; Camussi G; Aime S
    Cancer Res; 2006 Sep; 66(18):9196-201. PubMed ID: 16982763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-dimethylxanthenone-4-acetic acid: implications for combination therapy.
    Seshadri M; Spernyak JA; Mazurchuk R; Camacho SH; Oseroff AR; Cheney RT; Bellnier DA
    Clin Cancer Res; 2005 Jun; 11(11):4241-50. PubMed ID: 15930363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis.
    Winter PM; Neubauer AM; Caruthers SD; Harris TD; Robertson JD; Williams TA; Schmieder AH; Hu G; Allen JS; Lacy EK; Zhang H; Wickline SA; Lanza GM
    Arterioscler Thromb Vasc Biol; 2006 Sep; 26(9):2103-9. PubMed ID: 16825592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery.
    Crowder KC; Hughes MS; Marsh JN; Barbieri AM; Fuhrhop RW; Lanza GM; Wickline SA
    Ultrasound Med Biol; 2005 Dec; 31(12):1693-700. PubMed ID: 16344131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes.
    Balthasar S; Michaelis K; Dinauer N; von Briesen H; Kreuter J; Langer K
    Biomaterials; 2005 May; 26(15):2723-32. PubMed ID: 15585276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis.
    Behm CZ; Kaufmann BA; Carr C; Lankford M; Sanders JM; Rose CE; Kaul S; Lindner JR
    Circulation; 2008 Jun; 117(22):2902-11. PubMed ID: 18506006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.
    Cheon J; Lee JH
    Acc Chem Res; 2008 Dec; 41(12):1630-40. PubMed ID: 18698851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.