These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 15120432)
1. Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432 [TBL] [Abstract][Full Text] [Related]
2. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil. Tang SC; Yin K; Lo IM J Contam Hydrol; 2011 Jul; 125(1-4):39-46. PubMed ID: 21601936 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Nakajima A; Baba Y Water Res; 2004 Jul; 38(12):2859-64. PubMed ID: 15223280 [TBL] [Abstract][Full Text] [Related]
4. Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition. Park D; Ahn CK; Kim YM; Yun YS; Park JM J Hazard Mater; 2008 Dec; 160(2-3):422-7. PubMed ID: 18434006 [TBL] [Abstract][Full Text] [Related]
5. [Remediation of chromate contaminated soils by combined technology of electrokinetic and iron PRB]. Zhang RH; Sun HW Huan Jing Ke Xue; 2007 May; 28(5):1131-6. PubMed ID: 17633191 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation of Cr(VI) in contaminated soils. Krishna KR; Philip L J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411 [TBL] [Abstract][Full Text] [Related]
7. Soil humic acids may favour the persistence of hexavalent chromium in soil. Leita L; Margon A; Pastrello A; Arcon I; Contin M; Mosetti D Environ Pollut; 2009 Jun; 157(6):1862-6. PubMed ID: 19231051 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Weng CH; Lin YT; Lin TY; Kao CM J Hazard Mater; 2007 Oct; 149(2):292-302. PubMed ID: 17485164 [TBL] [Abstract][Full Text] [Related]
9. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. Cang L; Zhou DM; Alshawabkeh AN; Chen HF J Hazard Mater; 2007 Apr; 142(1-2):111-7. PubMed ID: 16956724 [TBL] [Abstract][Full Text] [Related]
10. The extractability of Cr(VI) from contaminated soil in synthetic sweat. Wainman T; Hazen RE; Lioy PJ J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472 [TBL] [Abstract][Full Text] [Related]
11. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Hellerich LA; Nikolaidis NP Water Res; 2005 Aug; 39(13):2851-68. PubMed ID: 15993460 [TBL] [Abstract][Full Text] [Related]
12. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Dong D; Zhao X; Hua X; Liu J; Gao M J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011 [TBL] [Abstract][Full Text] [Related]
14. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Sarangi A; Krishnan C Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879 [TBL] [Abstract][Full Text] [Related]
15. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil. Zhang P; Jin C; Zhao Z; Tian G J Hazard Mater; 2010 May; 177(1-3):1126-33. PubMed ID: 20122801 [TBL] [Abstract][Full Text] [Related]
16. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
17. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
18. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Park D; Lim SR; Yun YS; Park JM Chemosphere; 2007 Dec; 70(2):298-305. PubMed ID: 17644158 [TBL] [Abstract][Full Text] [Related]
19. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Gode F; Pehlivan E J Hazard Mater; 2005 Mar; 119(1-3):175-82. PubMed ID: 15752863 [TBL] [Abstract][Full Text] [Related]
20. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Hu J; Chen C; Zhu X; Wang X J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]