These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 15120501)

  • 1. The effect of synthetic polymers on the migration of monocytes through human cervical mucus.
    Willits RK; Saltzman WM
    Biomaterials; 2004 Aug; 25(19):4563-71. PubMed ID: 15120501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukocytes migrate through three-dimensional gels of midcycle cervical mucus.
    Parkhurst MR; Saltzman WM
    Cell Immunol; 1994 Jun; 156(1):77-94. PubMed ID: 8200044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic polymers alter the structure of cervical mucus.
    Willits RK; Saltzman WM
    Biomaterials; 2001 Mar; 22(5):445-52. PubMed ID: 11214755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cultivation of human cells on polymer covered biomaterial--a new concept to improve the implant characteristics. Results of an in-vitro-investigation].
    Pierkes M; Chang BJ; Alt D; Prucker O; Rühe J; Dahm M
    Herz; 2004 May; 29(3):341-7. PubMed ID: 15167962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatocyte viability and protein expression within hydrogel microstructures.
    Itle LJ; Koh WG; Pishko MV
    Biotechnol Prog; 2005; 21(3):926-32. PubMed ID: 15932275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of human cells on polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Huang Q; Peters K; Protzer D; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 May; 26(14):1877-84. PubMed ID: 15576161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes.
    De Bartolo L; Morelli S; Gallo MC; Campana C; Statti G; Rende M; Salerno S; Drioli E
    Biomaterials; 2005 Nov; 26(33):6625-34. PubMed ID: 15927248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ; Anseth KS
    Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics.
    Rizzi SC; Ehrbar M; Halstenberg S; Raeber GP; Schmoekel HG; Hagenmüller H; Müller R; Weber FE; Hubbell JA
    Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial.
    Jeong Y; Joo MK; Bahk KH; Choi YY; Kim HT; Kim WK; Lee HJ; Sohn YS; Jeong B
    J Control Release; 2009 Jul; 137(1):25-30. PubMed ID: 19306901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective grafting of poly(ethylene glycol) onto chitosan and the properties of the resulting copolymers.
    Liu L; Li F; Fang Y; Guo S
    Macromol Biosci; 2006 Oct; 6(10):855-61. PubMed ID: 17022094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.