These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15120523)

  • 21. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration.
    Schmalenberg KE; Uhrich KE
    Biomaterials; 2005 Apr; 26(12):1423-30. PubMed ID: 15482830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography.
    Lenhert S; Meier MB; Meyer U; Chi L; Wiesmann HP
    Biomaterials; 2005 Feb; 26(5):563-70. PubMed ID: 15276364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone tissue engineering on patterned collagen films: an in vitro study.
    Ber S; Torun Köse G; Hasirci V
    Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells.
    Dusseiller MR; Schlaepfer D; Koch M; Kroschewski R; Textor M
    Biomaterials; 2005 Oct; 26(29):5917-25. PubMed ID: 15949557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation.
    Iwanaga S; Akiyama Y; Kikuchi A; Yamato M; Sakai K; Okano T
    Biomaterials; 2005 Sep; 26(26):5395-404. PubMed ID: 15814138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of micropatterned surfaces coated with type I collagen on the orientation and growth of tenocytes].
    Chen X; Qin T; Wang Z; Yang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):382-7. PubMed ID: 18610627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Connective-tissue responses to defined biomaterial surfaces. II. Behavior of rat and mouse fibroblasts cultured on microgrooved substrates.
    Grew JC; Ricci JL; Alexander H
    J Biomed Mater Res A; 2008 May; 85(2):326-35. PubMed ID: 17688289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing macroporous bicontinuous materials as scaffolds for tissue engineering.
    Martina M; Subramanyam G; Weaver JC; Hutmacher DW; Morse DE; Valiyaveettil S
    Biomaterials; 2005 Oct; 26(28):5609-16. PubMed ID: 15878365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are micropatterned substrates for directed cell organization an effective method to create ordered 3D tissue constructs?
    Pietak A; McGregor A; Gauthier S; Oleschuk R; Waldman SD
    J Tissue Eng Regen Med; 2008 Oct; 2(7):450-3. PubMed ID: 18727136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
    Biela SA; Su Y; Spatz JP; Kemkemer R
    Acta Biomater; 2009 Sep; 5(7):2460-6. PubMed ID: 19410529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions.
    Yang JY; Ting YC; Lai JY; Liu HL; Fang HW; Tsai WB
    J Biomed Mater Res A; 2009 Sep; 90(3):629-40. PubMed ID: 18563818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces.
    Fujita S; Ono D; Ohshima M; Iwata H
    Biomaterials; 2008 Dec; 29(34):4494-500. PubMed ID: 18793798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility.
    Dong J; Sun Q; Wang JY
    Biomaterials; 2004 Aug; 25(19):4691-7. PubMed ID: 15120515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.
    Itoga K; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2006 May; 27(15):3005-9. PubMed ID: 16455135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane.
    Bajaj P; Khang D; Webster TJ
    Int J Nanomedicine; 2006; 1(3):361-5. PubMed ID: 17717976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of human cells on polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Huang Q; Peters K; Protzer D; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 May; 26(14):1877-84. PubMed ID: 15576161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity.
    Lan S; Veiseh M; Zhang M
    Biosens Bioelectron; 2005 Mar; 20(9):1697-708. PubMed ID: 15681184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.