These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of cyclo-DfKRG peptide immobilization on titanium on the adhesion and differentiation of human osteoprogenitor cells. Pallu S; Bourget C; Bareille R; Labrugère C; Dard M; Sewing A; Jonczyk A; Vernizeau M; Christine Durrieu M; Amédée-Vilamitjana J Biomaterials; 2005 Dec; 26(34):6932-40. PubMed ID: 15950276 [TBL] [Abstract][Full Text] [Related]
6. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Chollet C; Chanseau C; Remy M; Guignandon A; Bareille R; Labrugère C; Bordenave L; Durrieu MC Biomaterials; 2009 Feb; 30(5):711-20. PubMed ID: 19010529 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Schuler M; Owen GR; Hamilton DW; de Wild M; Textor M; Brunette DM; Tosatti SG Biomaterials; 2006 Jul; 27(21):4003-15. PubMed ID: 16574219 [TBL] [Abstract][Full Text] [Related]
8. Comparison between RGD-peptide-modified titanium and borosilicate surfaces. Senyah N; Hildebrand G; Liefeith K Anal Bioanal Chem; 2005 Nov; 383(5):758-62. PubMed ID: 16151591 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast response to titanium surfaces functionalized with extracellular matrix peptide biomimetics. Bell BF; Schuler M; Tosatti S; Textor M; Schwartz Z; Boyan BD Clin Oral Implants Res; 2011 Aug; 22(8):865-72. PubMed ID: 21244501 [TBL] [Abstract][Full Text] [Related]
10. Nanofibers grafted on titanium alloy: the effects of fiber alignment and density on osteoblast mineralization. Lin HY; Peng ZX J Mater Sci Mater Med; 2017 Aug; 28(9):140. PubMed ID: 28819756 [TBL] [Abstract][Full Text] [Related]
11. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation. Ryu JJ; Park K; Kim HS; Jeong CM; Huh JB Int J Oral Maxillofac Implants; 2013; 28(4):963-72. PubMed ID: 23869353 [TBL] [Abstract][Full Text] [Related]
13. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
14. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Auernheimer J; Zukowski D; Dahmen C; Kantlehner M; Enderle A; Goodman SL; Kessler H Chembiochem; 2005 Nov; 6(11):2034-40. PubMed ID: 16206226 [TBL] [Abstract][Full Text] [Related]
15. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides. Lieb E; Hacker M; Tessmar J; Kunz-Schughart LA; Fiedler J; Dahmen C; Hersel U; Kessler H; Schulz MB; Göpferich A Biomaterials; 2005 May; 26(15):2333-41. PubMed ID: 15585236 [TBL] [Abstract][Full Text] [Related]
16. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458 [TBL] [Abstract][Full Text] [Related]
17. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bagno A; Piovan A; Dettin M; Chiarion A; Brun P; Gambaretto R; Fontana G; Di Bello C; Palù G; Castagliuolo I Bone; 2007 Mar; 40(3):693-9. PubMed ID: 17142122 [TBL] [Abstract][Full Text] [Related]
18. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Reyes CD; Petrie TA; Burns KL; Schwartz Z; García AJ Biomaterials; 2007 Jul; 28(21):3228-35. PubMed ID: 17448533 [TBL] [Abstract][Full Text] [Related]