These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15120591)

  • 1. Target site of inhibition of baroreflex vagal bradycardia by nasal stimulation.
    Kobayashi M; Majima Y
    Brain Res; 2004 May; 1009(1-2):137-46. PubMed ID: 15120591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia.
    Inui K; Nosaka S
    J Neurophysiol; 1993 Dec; 70(6):2205-14. PubMed ID: 7907131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of baroreflex vagal bradycardia by nasal stimulation in rats.
    Kobayashi M; Cheng ZB; Nosaka S
    Am J Physiol; 1999 Jan; 276(1):H176-84. PubMed ID: 9887031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of baroreflex vagal bradycardia by selective stimulation of arterial chemoreceptors in rats.
    Murata T; Otsu K; Kobayashi M; Nosaka S
    Exp Physiol; 1999 Sep; 84(5):897-906. PubMed ID: 10502657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats.
    Nosaka S; Nakase N; Murata K
    Pflugers Arch; 1989 Apr; 413(6):656-66. PubMed ID: 2726429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The medical nucleus of the solitary tract mediates the trigeminally evoked pressor response.
    Dutschmann M; Herbert H
    Neuroreport; 1998 Apr; 9(6):1053-7. PubMed ID: 9601666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fos expression in the rat parabrachial and Kölliker-Fuse nuclei after electrical stimulation of the trigeminal ethmoidal nerve and water stimulation of the nasal mucosa.
    Dutschmann M; Herbert H
    Exp Brain Res; 1997 Oct; 117(1):97-110. PubMed ID: 9386008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nucleus tractus solitarius 5-HT3 receptors in the defense reaction-induced inhibition of the aortic baroreflex in rats.
    Sévoz-Couche C; Comet MA; Hamon M; Laguzzi R
    J Neurophysiol; 2003 Oct; 90(4):2521-30. PubMed ID: 12773495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.
    Ciriello J
    Brain Res Bull; 2013 Aug; 97():96-103. PubMed ID: 23792336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nasotrigeminal afferents on medullary respiratory neurones and upper airway patency in the rat.
    Dutschmann M; Paton JF
    Pflugers Arch; 2002 May; 444(1-2):227-35. PubMed ID: 11976936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Roles of vagal projection areas afferents on vagal input-evoked depressor response].
    Zou CJ; Gu YH; Chang YZ
    Sheng Li Xue Bao; 1993 Dec; 45(6):561-7. PubMed ID: 8146681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interaction between nucleus tractus solitarius NK1 and 5-HT3 receptors in the inhibition of baroreflex in rats.
    Comet MA; Laguzzi R; Hamon M; Sévoz-Couche C
    Cardiovasc Res; 2005 Mar; 65(4):930-9. PubMed ID: 15721874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of baroreflex vagal bradycardia by activation of the rostral ventrolateral medulla in rats.
    Nosaka S; Murata K; Kobayashi M; Cheng ZB; Maruyama J
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1239-47. PubMed ID: 10993790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat.
    Subramanian HH; Chow CM; Balnave RJ
    Brain Res; 2007 Apr; 1141():119-32. PubMed ID: 17291467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of optic tract stimulation on baroreflex vagal bradycardia in rats.
    Cheng ZB; Kobayashi M; Nosaka S
    Clin Exp Pharmacol Physiol; 2001 Sep; 28(9):721-8. PubMed ID: 11553030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prejunctional mechanism in midbrain periaqueductal gray inhibition of vagal bradycardia in rats.
    Nosaka S; Inui K; Murase S; Murata K
    Am J Physiol; 1996 Feb; 270(2 Pt 2):R373-82. PubMed ID: 8779868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive paired stimulation of nasotrigeminal and peripheral chemoreceptor afferents cause progressive potentiation of the diving bradycardia.
    Rozloznik M; Paton JF; Dutschmann M
    Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R80-7. PubMed ID: 18987289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume loading inhibits baroreflex vagal bradycardia in rats.
    Morooka S; Asano N; Kobayashi M; Nosaka S
    Auton Neurosci; 2002 Jan; 95(1-2):97-102. PubMed ID: 11871789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous gamma-aminobutyric acid (GABA) mediates ethanol inhibition of vagally mediated reflex bradycardia elicited from aortic baroreceptors.
    Varga K; Gantenberg NS; Kunos G
    J Pharmacol Exp Ther; 1994 Feb; 268(2):1057-62. PubMed ID: 8113962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional changes in baroreceptor afferent, central and efferent components of the baroreflex circuitry in type 1 diabetic mice (OVE26).
    Gu H; Epstein PN; Li L; Wurster RD; Cheng ZJ
    Neuroscience; 2008 Mar; 152(3):741-52. PubMed ID: 18328631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.