These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15120998)

  • 41. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.
    Belmont AS; Hu Y; Sinclair PB; Wu W; Bian Q; Kireev I
    Cold Spring Harb Symp Quant Biol; 2010; 75():453-60. PubMed ID: 21467143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coding RNAs with a non-coding function: maintenance of open chromatin structure.
    Caudron-Herger M; Müller-Ott K; Mallm JP; Marth C; Schmidt U; Fejes-Tóth K; Rippe K
    Nucleus; 2011; 2(5):410-24. PubMed ID: 21983088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs.
    Nozawa RS; Boteva L; Soares DC; Naughton C; Dun AR; Buckle A; Ramsahoye B; Bruton PC; Saleeb RS; Arnedo M; Hill B; Duncan RR; Maciver SK; Gilbert N
    Cell; 2017 Jun; 169(7):1214-1227.e18. PubMed ID: 28622508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nuclear architecture--an island no more.
    Dernburg AF; Misteli T
    Dev Cell; 2007 Mar; 12(3):329-34. PubMed ID: 17336900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonequilibrium Biophysical Processes Influence the Large-Scale Architecture of the Cell Nucleus.
    Agrawal A; Ganai N; Sengupta S; Menon GI
    Biophys J; 2020 May; 118(9):2229-2244. PubMed ID: 31818465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wheat chromatin architecture is organized in genome territories and transcription factories.
    Concia L; Veluchamy A; Ramirez-Prado JS; Martin-Ramirez A; Huang Y; Perez M; Domenichini S; Rodriguez Granados NY; Kim S; Blein T; Duncan S; Pichot C; Manza-Mianza D; Juery C; Paux E; Moore G; Hirt H; Bergounioux C; Crespi M; Mahfouz MM; Bendahmane A; Liu C; Hall A; Raynaud C; Latrasse D; Benhamed M
    Genome Biol; 2020 Apr; 21(1):104. PubMed ID: 32349780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-scale nuclear architecture and transcriptional control.
    Vaquerizas JM; Akhtar A; Luscombe NM
    Subcell Biochem; 2011; 52():279-95. PubMed ID: 21557088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Model of Repetitive-DNA-Organized Chromatin Network of Interphase Chromosomes.
    Tang SJ
    Genes (Basel); 2012 Mar; 3(1):167-75. PubMed ID: 24704848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-substrate lysis treatment combined with scanning probe microscopy revealed chromosome structures in eukaryotes and prokaryotes.
    Yoshimura SH; Kim J; Takeyasu K
    J Electron Microsc (Tokyo); 2003; 52(4):415-23. PubMed ID: 14599104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture.
    Foster HA; Bridger JM
    Chromosoma; 2005 Sep; 114(4):212-29. PubMed ID: 16133352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The nuclear skeleton and the spatial arrangement of chromosomes in the interphase nucleus of vertebrate somatic cells.
    Hubert J; Bourgeois CA
    Hum Genet; 1986 Sep; 74(1):1-15. PubMed ID: 3530977
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template.
    Hu Y; Kireev I; Plutz M; Ashourian N; Belmont AS
    J Cell Biol; 2009 Apr; 185(1):87-100. PubMed ID: 19349581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene control in eukaryotes and the c-value paradox "excess" DNA as an impediment to transcription of coding sequences.
    Zuckerkandl E
    J Mol Evol; 1976 Dec; 9(1):73-104. PubMed ID: 798041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro chromatin self-association and its relevance to genome architecture.
    Lu X; Klonoski JM; Resch MG; Hansen JC
    Biochem Cell Biol; 2006 Aug; 84(4):411-7. PubMed ID: 16936814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pathogenetic mechanisms of nuclear pleomorphism of tumour cells based on the mutator phenotype theory of carcinogenesis.
    Bignold LP
    Histol Histopathol; 2003 Apr; 18(2):657-64. PubMed ID: 12647815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D genome organization: a role for phase separation and loop extrusion?
    Stam M; Tark-Dame M; Fransz P
    Curr Opin Plant Biol; 2019 Apr; 48():36-46. PubMed ID: 31035031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide mapping and analysis of chromosome architecture.
    Schmitt AD; Hu M; Ren B
    Nat Rev Mol Cell Biol; 2016 Dec; 17(12):743-755. PubMed ID: 27580841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [A view on the structure-functional organization of eukaryotic chromosomes: once again about chromomeres].
    Glazkov MV
    Genetika; 1999 Nov; 35(11):1470-9. PubMed ID: 10624572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome 3D-architecture: Its plasticity in relation to function.
    Sengupta K
    J Biosci; 2018 Jun; 43(2):417-419. PubMed ID: 29872028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.