These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15121002)

  • 1. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch.
    Phillips CA; Repperger DW; Neidhard-Doll AT; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic model of skeletal muscle isometric contraction: II. A phenomenological model of the skeletal muscle excitation-contraction coupling process.
    Neidhard-Doll AT; Phillips CA; Repperger DW; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):323-44. PubMed ID: 15121003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans.
    Bobet J; Gossen ER; Stein RB
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):444-51. PubMed ID: 16425825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide.
    Barclay CJ; Lichtwark GA; Curtin NA
    Acta Physiol (Oxf); 2008 Aug; 193(4):381-91. PubMed ID: 18373742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model that predicts skeletal muscle force.
    Wexler AS; Ding J; Binder-Macleod SA
    IEEE Trans Biomed Eng; 1997 May; 44(5):337-48. PubMed ID: 9125818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-driven model of the upper extremity and estimation of long head biceps force.
    Langenderfer J; LaScalza S; Mell A; Carpenter JE; Kuhn JE; Hughes RE
    Comput Biol Med; 2005 Jan; 35(1):25-39. PubMed ID: 15567350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency response model of skeletal muscle and its association with contractile properties of skeletal muscle.
    Itoh Y; Akataki K; Mita K; Watakabe M; Nonaka H
    J Electromyogr Kinesiol; 2013 Jun; 23(3):572-9. PubMed ID: 23265663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is maximum isometric muscle stress the same among prime elbow flexors?
    Li L; Tong K; Song R; Koo TK
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):874-83. PubMed ID: 17681653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phenomenological model of muscle contraction with a controller to simulate the excitation-contraction (E-C) coupling.
    Tamura Y; Saito M; Ito A
    J Biomech; 2009 Feb; 42(3):400-3. PubMed ID: 19147146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions.
    El Makssoud H; Guiraud D; Poignet P; Hayashibe M; Wieber PB; Yoshida K; Azevedo-Coste C
    Biol Cybern; 2011 Aug; 105(2):121-38. PubMed ID: 21761241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle mechanism: The acceleration of the load.
    Grazi E
    Arch Biochem Biophys; 2010 Dec; 504(2):204-9. PubMed ID: 20836987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. History dependence of force production in skeletal muscle: a proposal for mechanisms.
    Herzog W
    J Electromyogr Kinesiol; 1998 Apr; 8(2):111-7. PubMed ID: 9680951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of static and dynamic characteristics between rectus eye muscle and linear muscle model predictions.
    Enderle JD; Engelken EJ; Stiles RN
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1235-45. PubMed ID: 1774085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of muscle fatigue using Hill's model.
    Tang CY; Stojanovic B; Tsui CP; Kojic M
    Biomed Mater Eng; 2005; 15(5):341-8. PubMed ID: 16179754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.