BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15121058)

  • 1. Updating a 3-D vertebral body finite element model using 2-D images.
    Templeton A; Cody D; Liebschner M
    Med Eng Phys; 2004 May; 26(4):329-33. PubMed ID: 15121058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness.
    Giambini H; Dragomir-Daescu D; Nassr A; Yaszemski MJ; Zhao C
    J Biomech Eng; 2016 Sep; 138(9):0910031-7. PubMed ID: 27428281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D reconstruction of the lumbar vertebrae from anteroposterior and lateral dual-energy X-ray absorptiometry.
    Whitmarsh T; Humbert L; Del Río Barquero LM; Di Gregorio S; Frangi AF
    Med Image Anal; 2013 May; 17(4):475-87. PubMed ID: 23466075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.
    Mastmeyer A; Engelke K; Fuchs C; Kalender WA
    Med Image Anal; 2006 Aug; 10(4):560-77. PubMed ID: 16828329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
    Bauer JS; Sidorenko I; Mueller D; Baum T; Issever AS; Eckstein F; Rummeny EJ; Link TM; Raeth CW
    Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3-D) reconstruction of the spine from a single X-ray image and prior vertebra models.
    Novosad J; Cheriet F; Petit Y; Labelle H
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1628-39. PubMed ID: 15376511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated finite-element analysis for deformable registration of prostate images.
    Crouch JR; Pizer SM; Chaney EL; Hu YC; Mageras GS; Zaider M
    IEEE Trans Med Imaging; 2007 Oct; 26(10):1379-90. PubMed ID: 17948728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional digital image correlation technique for strain measurements in microstructures.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2004 Sep; 37(9):1313-20. PubMed ID: 15275838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine.
    Benameur S; Mignotte M; Labelle H; De Guise JA
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2041-57. PubMed ID: 16366228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate measurement of bone mineral density using clinical CT imaging with single energy beam spectral intensity correction.
    Zhang J; Yan CH; Chui CK; Ong SH
    IEEE Trans Med Imaging; 2010 Jul; 29(7):1382-9. PubMed ID: 20236874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface extraction from multi-material components for metrology using dual energy CT.
    Heinzl C; Kastner J; Gröller E
    IEEE Trans Vis Comput Graph; 2007; 13(6):1520-7. PubMed ID: 17968105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of finite element models of liver tissue using micro-CT.
    Shi H; Farag AA; Fahmi R; Chen D
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):978-84. PubMed ID: 18334389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D analysis of mechanically stressed dentin-adhesive-composite interfaces using X-ray micro-CT.
    De Santis R; Mollica F; Prisco D; Rengo S; Ambrosio L; Nicolais L
    Biomaterials; 2005 Jan; 26(3):257-70. PubMed ID: 15262468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebral body segmentation with prior shape constraints for accurate BMD measurements.
    Ali AM; Aslan MS; Farag AA
    Comput Med Imaging Graph; 2014 Oct; 38(7):586-95. PubMed ID: 24878383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic vertebral morphometry assessment.
    Casciaro S; Massoptier L
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5571-4. PubMed ID: 18003275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.