These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 15121450)
21. Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis. Goto SG; Numata H J Insect Physiol; 2009 May; 55(5):401-7. PubMed ID: 19084533 [TBL] [Abstract][Full Text] [Related]
22. Adult locomotor rhythmicity as "hands" of the maternal photoperiodic clock regulating larval diapause in the blowfly, Calliphora vicina. Kenny NA; Saunders DS J Biol Rhythms; 1991; 6(3):217-33. PubMed ID: 1773093 [TBL] [Abstract][Full Text] [Related]
23. Maternal and larval effects of photoperiod on the induction of larval diapause in two species of fly, Calliphora vicina and Lucilia sericata. Saunders DS; Macpherson JN; Cairncross KD Exp Biol; 1986; 46(1):51-8. PubMed ID: 3817113 [TBL] [Abstract][Full Text] [Related]
24. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). He HM; Xiao HJ; Xue FS Bull Entomol Res; 2018 Dec; 108(6):773-780. PubMed ID: 29397053 [TBL] [Abstract][Full Text] [Related]
25. Involvement of circadian oscillation(s) in the photoperiodic time measurement and the induction of reproductive diapause in a northern Drosophila species. Kauranen H; Tyukmaeva V; Hoikkala A J Insect Physiol; 2013 Jul; 59(7):662-6. PubMed ID: 23665332 [TBL] [Abstract][Full Text] [Related]
26. Photoperiodic control of diapause induction and termination in Ostrinia nubilalis: two different clocks? Skopik SD; Takeda M J Biol Rhythms; 1986; 1(2):137-43. PubMed ID: 2979579 [TBL] [Abstract][Full Text] [Related]
27. A Comparative Study of Circadian Rhythmicity and Photoperiodism in Closely Related Species of Blow Flies: External Coincidence, Maternal Induction, and Diapause at Northern Latitudes. Saunders D J Biol Rhythms; 2021 Dec; 36(6):532-547. PubMed ID: 34738497 [TBL] [Abstract][Full Text] [Related]
28. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Lankinen P; Forsman P J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980 [TBL] [Abstract][Full Text] [Related]
29. The same photoperiodic clock may control induction and maintenance of diapause in the spider mite Tetranchus urticae. Koveos DS; Kroon A; Veerman A J Biol Rhythms; 1993; 8(4):265-82. PubMed ID: 8032087 [TBL] [Abstract][Full Text] [Related]
30. Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause. Vaze KM; Helfrich-Förster C Physiol Entomol; 2016 Dec; 41(4):378-389. PubMed ID: 27867253 [TBL] [Abstract][Full Text] [Related]
31. Short- and long-day responses in the pre-adult developmental duration of two species of Camponotus ants. Lone SR; Ilangovan V; Murugan M; Sharma VK Chronobiol Int; 2011 Mar; 28(2):163-9. PubMed ID: 21231878 [TBL] [Abstract][Full Text] [Related]
32. Quantitative short-day photoperiodic response in larval development and its adaptive significance in an adult-overwintering cerambycid beetle, Phytoecia rufiventris. Shintani Y J Insect Physiol; 2011 Jul; 57(7):1053-9. PubMed ID: 21616076 [TBL] [Abstract][Full Text] [Related]
33. Circadian resonance in the development of two sympatric species of Camponotus ants. Lone SR; Ilangovan V; Murugan M; Sharma VK J Insect Physiol; 2010 Nov; 56(11):1611-6. PubMed ID: 20570678 [TBL] [Abstract][Full Text] [Related]
34. Experimental evidence for a non-clock role of the circadian system in spider mite photoperiodism. Veerman A; Veenendaal RL J Insect Physiol; 2003 Aug; 49(8):727-32. PubMed ID: 12880652 [TBL] [Abstract][Full Text] [Related]
35. Nanda-Hamner Curves Show Huge Latitudinal Variation but No Circadian Components in Lankinen P; Kastally C; Hoikkala A J Biol Rhythms; 2021 Jun; 36(3):226-238. PubMed ID: 33745359 [TBL] [Abstract][Full Text] [Related]
36. Effects of photoperiod and temperature on diapause induction in Conogethes punctiferalis (Lepidoptera: Pyralidae). Xu LR; Ni X; Wang ZY; He KL Insect Sci; 2014 Oct; 21(5):556-63. PubMed ID: 23956155 [TBL] [Abstract][Full Text] [Related]
37. Examination of parental effect on the progeny diapause by reciprocal cross test in the cabbage beetle, Colaphellus bowringi. Ma CH; Ding N; Wang XP; Lei CL J Insect Sci; 2011; 11():145. PubMed ID: 22224544 [TBL] [Abstract][Full Text] [Related]
38. Insect photoperiodism: diversity of results in night-break experiments, including nonresponsiveness to light. Skopik SD; Takeda M; Cain WJ; Patel NG J Biol Rhythms; 1986; 1(3):243-9. PubMed ID: 2979587 [TBL] [Abstract][Full Text] [Related]
39. Krüppel homolog 1 regulates photoperiodic reproductive plasticity in the cabbage beetle Colaphellus bowringi. Guo S; Wu QW; Tian Z; Zhu L; King-Jones K; Zhu F; Wang XP; Liu W Insect Biochem Mol Biol; 2021 Jul; 134():103582. PubMed ID: 33905880 [TBL] [Abstract][Full Text] [Related]
40. Effects of constant and changing temperature conditions on diapause induction in Helicoverpa armigera (Lepidoptera: Noctuidae). Mironidis GK; Savopoulou-Soultani M Bull Entomol Res; 2012 Apr; 102(2):139-47. PubMed ID: 21892980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]