These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15122363)

  • 1. Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea.
    Man-Aharonovich D; Sabehi G; Sineshchekov OA; Spudich EN; Spudich JL; Béjà O
    Photochem Photobiol Sci; 2004 May; 3(5):459-62. PubMed ID: 15122363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean.
    Jung JY; Choi AR; Lee YK; Lee HK; Jung KH
    FEBS Lett; 2008 May; 582(12):1679-84. PubMed ID: 18435930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L105K mutant of proteorhodopsin.
    Maiti TK; Yamada K; Inoue K; Kandori H
    Biochemistry; 2012 Apr; 51(15):3198-204. PubMed ID: 22458882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A color-determining amino acid residue of proteorhodopsin.
    Ozaki Y; Kawashima T; Abe-Yoshizumi R; Kandori H
    Biochemistry; 2014 Sep; 53(38):6032-40. PubMed ID: 25180875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin.
    Kralj JM; Bergo VB; Amsden JJ; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2008 Mar; 47(11):3447-53. PubMed ID: 18284210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin.
    Wang WW; Sineshchekov OA; Spudich EN; Spudich JL
    J Biol Chem; 2003 Sep; 278(36):33985-91. PubMed ID: 12821661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous pH Effect of Blue Proteorhodopsin.
    Yamada K; Kawanabe A; Yoshizawa S; Inoue K; Kogure K; Kandori H
    J Phys Chem Lett; 2012 Apr; 3(7):800-4. PubMed ID: 26286400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas.
    Sabehi G; Kirkup BC; Rozenberg M; Stambler N; Polz MF; Béjà O
    ISME J; 2007 May; 1(1):48-55. PubMed ID: 18043613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color-changing mutation in the E-F loop of proteorhodopsin.
    Yoshitsugu M; Yamada J; Kandori H
    Biochemistry; 2009 May; 48(20):4324-30. PubMed ID: 19334675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification and spectral tuning in marine proteorhodopsins.
    Man D; Wang W; Sabehi G; Aravind L; Post AF; Massana R; Spudich EN; Spudich JL; Béjà O
    EMBO J; 2003 Apr; 22(8):1725-31. PubMed ID: 12682005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different SAR86 subgroups harbour divergent proteorhodopsins.
    Sabehi G; Béjà O; Suzuki MT; Preston CM; DeLong EF
    Environ Microbiol; 2004 Sep; 6(9):903-10. PubMed ID: 15305915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry.
    Church JR; Amoyal GS; Borin VA; Adam S; Olsen JMH; Schapiro I
    Chemistry; 2022 May; 28(28):e202200139. PubMed ID: 35307890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and assembly of proteorhodopsin.
    Klyszejko AL; Shastri S; Mari SA; Grubmüller H; Muller DJ; Glaubitz C
    J Mol Biol; 2008 Feb; 376(1):35-41. PubMed ID: 18155728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption of schiff-base retinal chromophores in vacuo.
    Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA
    J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of water on the photochemical reaction cycle of proteorhodopsin at low and high pH.
    Lakatos M; Váró G
    J Photochem Photobiol B; 2004 Feb; 73(3):177-82. PubMed ID: 14975406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Proteorhodopsin variants from the Mediterranean and Red Seas.
    Sabehi G; Massana R; Bielawski JP; Rosenberg M; Delong EF; Béjà O
    Environ Microbiol; 2003 Oct; 5(10):842-9. PubMed ID: 14510837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.