BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15122641)

  • 1. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assay for the enantiomeric analysis of [2H1]-fluoroacetic acid: insight into the stereochemical course of fluorination during fluorometabolite biosynthesis in streptomyces cattleya.
    O'Hagan D; Goss RJ; Meddour A; Courtieu J
    J Am Chem Soc; 2003 Jan; 125(2):379-87. PubMed ID: 12517149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of enzymatic fluorination in Streptomyces cattleya.
    Zhu X; Robinson DA; McEwan AR; O'Hagan D; Naismith JH
    J Am Chem Soc; 2007 Nov; 129(47):14597-604. PubMed ID: 17985882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterisation of 5'-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya.
    Schaffrath C; Deng H; O'Hagan D
    FEBS Lett; 2003 Jul; 547(1-3):111-4. PubMed ID: 12860396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluorinase from Streptomyces cattleya is also a chlorinase.
    Deng H; Cobb SL; McEwan AR; McGlinchey RP; Naismith JH; O'Hagan D; Robinson DA; Spencer JB
    Angew Chem Int Ed Engl; 2006 Jan; 45(5):759-62. PubMed ID: 16370017
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.
    Cobb SL; Deng H; McEwan AR; Naismith JH; O'Hagan D; Robinson DA
    Org Biomol Chem; 2006 Apr; 4(8):1458-60. PubMed ID: 16604208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of methionine adenosyltransferase with high diastereoselectivity for biocatalytic synthesis of (S)-S-adenosyl-l-methionine and exploring its relationship with fluorinated biosynthetic pathway.
    Ren S; Cheng X; Ma L
    Enzyme Microb Technol; 2021 Oct; 150():109881. PubMed ID: 34489034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-Methylation Catalyzed by Fom3, a Cobalamin-Dependent Radical S-adenosyl-l-methionine Enzyme in Fosfomycin Biosynthesis, Proceeds with Inversion of Configuration.
    Sato S; Kudo F; Kuzuyama T; Hammerschmidt F; Eguchi T
    Biochemistry; 2018 Aug; 57(33):4963-4966. PubMed ID: 29966085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall Retention of Methyl Stereochemistry during B
    McLaughlin MI; Pallitsch K; Wallner G; van der Donk WA; Hammerschmidt F
    Biochemistry; 2021 May; 60(20):1587-1596. PubMed ID: 33942609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23.
    Kim DJ; Huh JH; Yang YY; Kang CM; Lee IH; Hyun CG; Hong SK; Suh JW
    J Bacteriol; 2003 Jan; 185(2):592-600. PubMed ID: 12511506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis.
    Wang Y; Deng Z; Qu X
    F1000Res; 2014; 3():61. PubMed ID: 24795808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met.
    Komoto J; Yamada T; Takata Y; Markham GD; Takusagawa F
    Biochemistry; 2004 Feb; 43(7):1821-31. PubMed ID: 14967023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase.
    Jiang Y; Yao M; Niu H; Wang W; He J; Qiao B; Li B; Dong M; Xiao W; Yuan Y
    J Agric Food Chem; 2024 Jan; 72(2):1203-1212. PubMed ID: 38179953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from Streptomyces fradiae, a Cobalamin-Dependent Radical S-Adenosylmethionine Methylase.
    Wang B; Blaszczyk AJ; Knox HL; Zhou S; Blaesi EJ; Krebs C; Wang RX; Booker SJ
    Biochemistry; 2018 Aug; 57(33):4972-4984. PubMed ID: 30036047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide.
    Zhang X; Fen M; Shi X; Bai L; Zhou P
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):991-5. PubMed ID: 18330566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.