BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15122647)

  • 1. Characterization of the actions of AvTx 7 isolated from Agelaia vicina (Hymenoptera: Vespidae) wasp venom on synaptosomal glutamate uptake and release.
    Pizzo AB; Beleboni RO; Fontana AC; Ribeiro AM; Miranda A; Coutinho-Netto J; dos Santos WF
    J Biochem Mol Toxicol; 2004; 18(2):61-8. PubMed ID: 15122647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Tityus serrulatus scorpion venom and its toxin TsTX-V on neurotransmitter uptake in vitro.
    Cecchini AL; Vasconcelos F; Amara SG; Giglio JR; Arantes EC
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):196-203. PubMed ID: 17049577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and chemical characterization of agelaiatoxin8 (AvTx8) from Agelaia vicina wasp venom and its biological effects on GABA neurotransmission.
    Pizzo AB; Beleboni RO; Gomes Carolino RO; de Oliveira L; Miranda A; Coutinho-Netto J; Fontana ACK; Dos Santos WF
    J Biochem Mol Toxicol; 2017 Oct; 31(10):. PubMed ID: 28621878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the crude venom of the social wasp Agelaia vicina on gamma-aminobutyric acid and glutamate uptake in synaptosomes from rat cerebral cortex.
    Pizzo AB; Fontana AC; Coutinho-Netto J; dos Santos WF
    J Biochem Mol Toxicol; 2000; 14(2):88-94. PubMed ID: 10630422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microinjections of neurotoxin AvTx8, isolated from the social wasp Agelaia vicina (Hymenoptera, Vespidae) venom, on GABAergic nigrotectal pathways.
    de Oliveira L; Cunha AO; Mortari MR; Pizzo AB; Miranda A; Coimbra NC; dos Santos WF
    Brain Res; 2005 Jan; 1031(1):74-81. PubMed ID: 15621014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Lin TY; Lu CW; Tien LT; Chuang SH; Wang YR; Chang WH; Wang SJ
    Neurochem Int; 2009 Jul; 54(8):506-12. PubMed ID: 19428795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.
    Sitges M; Galindo CA
    Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncompetitive metabotropic glutamate5 receptor antagonist (E)-2-methyl-6-styryl-pyridine (SIB1893) depresses glutamate release through inhibition of voltage-dependent Ca2+ entry in rat cerebrocortical nerve terminals (synaptosomes).
    Wang SJ; Sihra TS
    J Pharmacol Exp Ther; 2004 Jun; 309(3):951-8. PubMed ID: 14982967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway.
    Wang SJ
    Neuroscience; 2005; 134(3):987-1000. PubMed ID: 16026936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Chou SH; Kuo YC; Chou SS; Tzeng WF; Leu JY; Huang RF; Liew YF
    Acta Pharmacol Sin; 2008 Nov; 29(11):1289-95. PubMed ID: 18954522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iptakalim hydrochloride protects cells against neurotoxin-induced glutamate transporter dysfunction in in vitro and in vivo models.
    Yang YL; Meng CH; Ding JH; He HR; Ellsworth K; Wu J; Hu G
    Brain Res; 2005 Jul; 1049(1):80-8. PubMed ID: 15932749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by 'pathologically' elevated extraterminal K+ concentrations.
    Raiteri L; Zappettini S; Milanese M; Fedele E; Raiteri M; Bonanno G
    J Neurochem; 2007 Nov; 103(3):952-61. PubMed ID: 17662048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of glutamate release from rat cerebrocortical synaptosomes by dextromethorphan and its metabolite 3-hydroxymorphinan.
    Lin TY; Lu CW; Wang SJ
    Neurochem Int; 2009 Jul; 54(8):526-34. PubMed ID: 19428798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartate release from rat hippocampal synaptosomes.
    Bradford SE; Nadler JV
    Neuroscience; 2004; 128(4):751-65. PubMed ID: 15464283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of new Phoneutria spider toxins on glutamate release and [Ca2+]i in rat cortical synaptosomes.
    Carneiro DS; Vieira LB; Cordeiro MN; Richardson M; Castro-Junior CJ; Gomez MV; Reis HJ
    Cell Mol Biol (Noisy-le-grand); 2010 Feb; 56 Suppl():OL1223-30. PubMed ID: 20158975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminopyridine-evoked release.
    Westphalen RI; Hemmings HC
    J Pharmacol Exp Ther; 2006 Jan; 316(1):216-23. PubMed ID: 16174800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modulation of Ca2+ and K+ channels but not changes in cAMP signaling contribute to the inhibition of glutamate release by cannabinoid receptors in cerebrocortical nerve terminals.
    del Carmen Godino M; Torres M; Sánchez-Prieto J
    Neuropharmacology; 2005 Mar; 48(4):547-57. PubMed ID: 15755482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.