These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1512273)

  • 1. Cruciform extrusion facilitates intramolecular triplex formation between distal oligopurine.oligopyrimidine tracts: long range effects.
    Klysik J
    J Biol Chem; 1992 Aug; 267(24):17430-7. PubMed ID: 1512273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences near the origin of replication of the DHFR locus of Chinese hamster ovary cells adopt left-handed Z-DNA and triplex structures.
    Bianchi A; Wells RD; Heintz NH; Caddle MS
    J Biol Chem; 1990 Dec; 265(35):21789-96. PubMed ID: 2254331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-rich flanking tracts decrease the kinetics of intramolecular DNA triplex formation.
    Kang S; Wohlrab F; Wells RD
    J Biol Chem; 1992 Sep; 267(27):19435-42. PubMed ID: 1527063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The loop sequence plays crucial roles for isomerization of intramolecular DNA triplexes in supercoiled plasmids.
    Shimizu M; Kubo K; Matsumoto U; Shindo H
    J Mol Biol; 1994 Jan; 235(1):185-97. PubMed ID: 8289240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition.
    Jayasena SD; Johnston BH
    Nucleic Acids Res; 1992 Oct; 20(20):5279-88. PubMed ID: 1437547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kilobase-range communication between polypurine.polypyrimidine tracts in linear plasmids mediated by triplex formation: a braided knot between two linear duplexes.
    Hampel KJ; Ashley C; Lee JS
    Biochemistry; 1994 May; 33(19):5674-81. PubMed ID: 8180192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central non-Pur.Pyr sequences in oligo(dG.dC) tracts and metal ions influence the formation of intramolecular DNA triplex isomers.
    Kang S; Wells RD
    J Biol Chem; 1992 Oct; 267(29):20887-91. PubMed ID: 1400403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of length, supercoiling, and pH on intramolecular triplex formation. Multiple conformers at pur.pyr mirror repeats.
    Collier DA; Wells RD
    J Biol Chem; 1990 Jun; 265(18):10652-8. PubMed ID: 2355014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular DNA triplexes in supercoiled plasmids. I. Effect of loop size on formation and stability.
    Shimizu M; Hanvey JC; Wells RD
    J Biol Chem; 1989 Apr; 264(10):5944-9. PubMed ID: 2647730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli single-stranded DNA-binding protein alters the structure of intramolecular triplexes in plasmids.
    Klysik J; Shimizu M
    FEBS Lett; 1993 Nov; 333(3):261-7. PubMed ID: 8224190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction in vitro of type III intermediate filament proteins with triplex DNA.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2002 Mar; 21(3):163-88. PubMed ID: 12015895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex structural behavior of oligopurine-oligopyrimidine sequence cloned within the supercoiled plasmid.
    Parniewski P; Galazka G; Wilk A; Klysik J
    Nucleic Acids Res; 1989 Jan; 17(2):617-29. PubMed ID: 2644622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of triple-helix related structures adopted by poly(dG)-poly(dC) sequences in supercoiled plasmid DNA.
    Kohwi-Shigematsu T; Kohwi Y
    Nucleic Acids Res; 1991 Aug; 19(15):4267-71. PubMed ID: 1870980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why is the initiation nick site of an AT-rich rolling circle plasmid at the tip of a GC-rich cruciform?
    Jin R; Fernandez-Beros ME; Novick RP
    EMBO J; 1997 Jul; 16(14):4456-66. PubMed ID: 9250690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular DNA triplexes in supercoiled plasmids.
    Hanvey JC; Shimizu M; Wells RD
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6292-6. PubMed ID: 3413097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long (dA)n.(dT)n tracts can form intramolecular triplexes under superhelical stress.
    Fox KR
    Nucleic Acids Res; 1990 Sep; 18(18):5387-91. PubMed ID: 2216711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine.oligopyrimidine inserts in plasmids.
    Hanvey JC; Klysik J; Wells RD
    J Biol Chem; 1988 May; 263(15):7386-96. PubMed ID: 2835375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.