These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1512281)

  • 1. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.
    Latour RA; Black J
    J Biomed Mater Res; 1992 May; 26(5):593-606. PubMed ID: 1512281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of FRP composite structural biomaterials: fatigue strength of the fiber/matrix interfacial bond in simulated in vivo environments.
    Latour RA; Black J
    J Biomed Mater Res; 1993 Oct; 27(10):1281-91. PubMed ID: 8245042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments.
    Meyer MR; Friedman RJ; Del Schutte H; Latour RA
    J Biomed Mater Res; 1994 Oct; 28(10):1221-31. PubMed ID: 7829551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of push-out bond strength of direct ceramic inlays to tooth surface with fiber-reinforced composite at the interface.
    Cekic I; Ergun G; Uctasli S; Lassila LV
    J Prosthet Dent; 2007 May; 97(5):271-8. PubMed ID: 17547945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface effects on mechanical properties of particle-reinforced composites.
    Debnath S; Ranade R; Wunder SL; McCool J; Boberick K; Baran G
    Dent Mater; 2004 Sep; 20(7):677-86. PubMed ID: 15236943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites.
    Ehlert GJ; Sodano HA
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1827-33. PubMed ID: 20355800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix.
    Bae JM; Kim KN; Hattori M; Hasegawa K; Yoshinari M; Kawada E; Oda Y
    Int J Prosthodont; 2001; 14(1):33-9. PubMed ID: 11842902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite.
    Ellakwa AE; Shortall AC; Marquis PM
    J Prosthet Dent; 2002 Nov; 88(5):485-90. PubMed ID: 12473997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bond strength performance of different resin composites used as core materials around fiber posts.
    Sadek FT; Monticelli F; Goracci C; Tay FR; Cardoso PE; Ferrari M
    Dent Mater; 2007 Jan; 23(1):95-9. PubMed ID: 16434092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite.
    Vallittu PK; Ruyter IE; Ekstrand K
    Int J Prosthodont; 1998; 11(4):340-50. PubMed ID: 9758998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.
    Radovic I; Monticelli F; Papacchini F; Magni E; Cury AH; Vulicevic ZR; Ferrari M
    J Dent; 2007 Aug; 35(8):683-9. PubMed ID: 17614189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond strength between a silica glass-fiber-reinforced composite and artificial polymer teeth.
    Meriç G; Ruyter IE
    Acta Odontol Scand; 2007 Oct; 65(5):306-12. PubMed ID: 18092203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thermocycling on bond strength and elasticity of 4 long-term soft denture liners.
    Pinto JR; Mesquita MF; Henriques GE; de Arruda Nóbilo MA
    J Prosthet Dent; 2002 Nov; 88(5):516-21. PubMed ID: 12474002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices.
    Andriano KP; Daniels AU; Heller J
    J Appl Biomater; 1992; 3(3):197-206. PubMed ID: 10147716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix.
    Garoushi S; Vallittu PK; Lassila LV
    Dent Mater; 2007 Nov; 23(11):1356-62. PubMed ID: 17204319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chemical surface treatments of quartz and glass fiber posts on the retention of a composite resin.
    Yenisey M; Kulunk S
    J Prosthet Dent; 2008 Jan; 99(1):38-45. PubMed ID: 18182184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bond strength of particulate-filler composite to differently oriented fiber-reinforced composite substrate.
    Lassila LV; Tezvergil A; Dyer SR; Vallittu PK
    J Prosthodont; 2007; 16(1):10-7. PubMed ID: 17244302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-modulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants.
    Spector M; Michno MJ; Smarook WH; Kwiatkowski GT
    J Biomed Mater Res; 1978 Sep; 12(5):665-77. PubMed ID: 701302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.
    Eronat N; Candan U; Türkün M
    J Esthet Restor Dent; 2009; 21(3):171-8; discussion 179-81. PubMed ID: 19508260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.