These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1512281)

  • 41. R-curve behavior and toughening mechanisms of resin-based dental composites: effects of hydration and post-cure heat treatment.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jun; 25(6):760-70. PubMed ID: 19187956
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dentin bond strength and marginal adaptation: direct composite resins vs ceramic inlays.
    Frankenberger R; Sindel J; Krämer N; Petschelt A
    Oper Dent; 1999; 24(3):147-55. PubMed ID: 10530276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of surface treatments and bonding agents on the bond strength of repaired composites.
    Cavalcanti AN; De Lima AF; Peris AR; Mitsui FH; Marchi GM
    J Esthet Restor Dent; 2007; 19(2):90-8; discussion 99. PubMed ID: 17374114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Composite implants for orthopedic applications: in vivo evaluation of candidate resins.
    Jacobs ML; Black J
    J Biomed Mater Res; 1975 Jul; 9(4):221-5. PubMed ID: 1176503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-aramid composites by partial fiber dissolution.
    Zhang JM; Mousavi Z; Soykeabkaew N; Smith P; Nishino T; Peijs T
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):919-26. PubMed ID: 20356299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Material selection and structural design of simulated space module for field].
    Huang Y; Jin XG; Wang LG; Hu YY; Shi XY
    Space Med Med Eng (Beijing); 2000 Feb; 13(1):48-51. PubMed ID: 12214611
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications.
    Gloria A; Ronca D; Russo T; D'Amora U; Chierchia M; De Santis R; Nicolais L; Ambrosio L
    J Appl Biomater Biomech; 2011; 9(2):151-63. PubMed ID: 22065393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.
    Zhang X; Fan X; Yan C; Li H; Zhu Y; Li X; Yu L
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1543-52. PubMed ID: 22391332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24918250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic considerations for strength recovery at the fiber-matrix interface based on the Diels-Alder reaction.
    Peterson AM; Jensen RE; Palmese GR
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):815-21. PubMed ID: 23317573
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance.
    Ferguson SJ; Weber U; von Rechenberg B; Mayer J
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):13-20. PubMed ID: 16211571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Carbon fiber reinforced polysulfone--a new implant material].
    Claes L
    Biomed Tech (Berl); 1989 Dec; 34(12):315-9. PubMed ID: 2620085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer.
    Knowles JC; Hastings GW; Ohta H; Niwa S; Boeree N
    Biomaterials; 1992; 13(8):491-6. PubMed ID: 1321677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation resistance of some candidate composite biomaterials.
    McKenna G; Bradley GW; Dunn HK; Statton WO
    J Biomed Mater Res; 1979 Sep; 13(5):783-98. PubMed ID: 479222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gradient composite materials for artificial intervertebral discs.
    Migacz K; Chłopek J; Morawska-Chochół A; Ambroziak M
    Acta Bioeng Biomech; 2014; 16(3):3-12. PubMed ID: 25306938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The degradation performance of bioabsorbable acylchitin fiber reinforced PLA composite materials in vitro and in vivo].
    Chen C; Cheng H; Sun K; Wu R; Jiang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):117-21. PubMed ID: 12557760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioactive glass fiber/polymeric composites bond to bone tissue.
    Marcolongo M; Ducheyne P; Garino J; Schepers E
    J Biomed Mater Res; 1998 Jan; 39(1):161-70. PubMed ID: 9429107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological and mechanical characterization of carbon fiber frameworks for dental implant applications.
    Menini M; Pesce P; Pera F; Barberis F; Lagazzo A; Bertola L; Pera P
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):646-655. PubMed ID: 27770938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.