BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 15122911)

  • 1. Conversion of the 2,2,6,6-tetramethylpiperidine moiety to a 2,2-dimethylpyrrolidine by cytochrome P450: evidence for a mechanism involving nitroxide radicals and heme iron.
    Yin W; Mitra K; Stearns RA; Baillie TA; Kumar S
    Biochemistry; 2004 May; 43(18):5455-66. PubMed ID: 15122911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel P450-catalyzed transformation of the 2,2,6,6-tetramethyl piperidine moiety to a 2,2-dimethyl pyrrolidine in human liver microsomes: characterization by high resolution quadrupole-time-of-flight mass spectrometry and 1H-NMR.
    Yin W; Doss GA; Stearns RA; Chaudhary AG; Hop CE; Franklin RB; Kumar S
    Drug Metab Dispos; 2003 Feb; 31(2):215-23. PubMed ID: 12527703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen-trapping reaction as a method of (1)O2 detection: role of some reducing agents.
    Dzwigaj S; Pezerat H
    Free Radic Res; 1995 Aug; 23(2):103-15. PubMed ID: 7581808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism in rat liver microsomes of the nitroxide spin probe tempol.
    Iannone A; Bini A; Swartz HM; Tomasi A; Vannini V
    Biochem Pharmacol; 1989 Aug; 38(16):2581-6. PubMed ID: 2764982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of singlet oxygen in cytochrome P450-dependent substrate oxidations.
    Osada M; Ogura Y; Yasui H; Sakurai H
    Biochem Biophys Res Commun; 1999 Sep; 263(2):392-7. PubMed ID: 10491304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro synthesis of nitroxide free radicals by hog liver microsomes.
    Valvis II; Lischick D; Shen D; Sofer SS
    Free Radic Biol Med; 1990; 9(4):345-53. PubMed ID: 2178149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin scavenging analysis of myoglobin protein-centered radicals using stable nitroxide radicals: characterization of oxoammonium cation-induced modifications.
    Lardinois OM; Maltby DA; Medzihradszky KF; de Montellano PR; Tomer KB; Mason RP; Deterding LJ
    Chem Res Toxicol; 2009 Jun; 22(6):1034-49. PubMed ID: 19449826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive activation of 1,1-dichloro-1-fluoroethane (HCFC-141b) by phenobarbital- and pyridine-induced rat liver microsomal cytochrome P450.
    Tolando R; Ferrara R; Eldirdiri NI; Albores A; King LJ; Manno M
    Xenobiotica; 1996 Apr; 26(4):425-35. PubMed ID: 9173683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism-dependent inhibition of CYP3A4 by lapatinib: evidence for formation of a metabolic intermediate complex with a nitroso/oxime metabolite formed via a nitrone intermediate.
    Barbara JE; Kazmi F; Parkinson A; Buckley DB
    Drug Metab Dispos; 2013 May; 41(5):1012-22. PubMed ID: 23404373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine.
    Deslauriers R; Butler K; Smith IC
    Biochim Biophys Acta; 1987 Dec; 931(3):267-75. PubMed ID: 3315005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine.
    Babić N; Orio M; Peyrot F
    Free Radic Biol Med; 2020 Aug; 156():144-156. PubMed ID: 32561320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel glutathione conjugate of flutamide in incubations with human liver microsomes.
    Kang P; Dalvie D; Smith E; Zhou S; Deese A
    Drug Metab Dispos; 2007 Jul; 35(7):1081-8. PubMed ID: 17403914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spin trap study on anaerobic dehalogenation of halothane by a reconstituted liver microsomal cytochrome P-450 enzyme system.
    Fujii K; Miki N; Kanashiro M; Miura R; Sugiyama T; Morio M; Yamano T; Miyake Y
    J Biochem; 1982 Jan; 91(1):415-8. PubMed ID: 6279588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron.
    Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL
    Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes.
    Jiang Y; He X; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(2):533-42. PubMed ID: 16401082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete species of activated oxygen yield different cytochrome P450 heme adducts from aldehydes.
    Kuo CL; Raner GM; Vaz AD; Coon MJ
    Biochemistry; 1999 Aug; 38(32):10511-8. PubMed ID: 10441147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism-based inactivation of cytochromes P450 2E1 and 2E1 T303A by tert-butyl acetylenes: characterization of reactive intermediate adducts to the heme and apoprotein.
    Blobaum AL; Kent UM; Alworth WL; Hollenberg PF
    Chem Res Toxicol; 2002 Dec; 15(12):1561-71. PubMed ID: 12482238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.