These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1270 related articles for article (PubMed ID: 15122913)
1. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
2. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
3. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Budde M; Maurer SC; Schmid RD; Urlacher VB Appl Microbiol Biotechnol; 2004 Dec; 66(2):180-6. PubMed ID: 15375636 [TBL] [Abstract][Full Text] [Related]
5. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Sevrioukova I; Truan G; Peterson JA Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532 [TBL] [Abstract][Full Text] [Related]
6. Affinity isolation and characterization of cytochrome P450 102 (BM-3) from barbiturate-induced Bacillus megaterium. Black SD; Linger MH; Freck LC; Kazemi S; Galbraith JA Arch Biochem Biophys; 1994 Apr; 310(1):126-33. PubMed ID: 8161195 [TBL] [Abstract][Full Text] [Related]
7. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
8. Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858 [TBL] [Abstract][Full Text] [Related]
9. Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. Budde M; Morr M; Schmid RD; Urlacher VB Chembiochem; 2006 May; 7(5):789-94. PubMed ID: 16566047 [TBL] [Abstract][Full Text] [Related]
10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
11. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705 [TBL] [Abstract][Full Text] [Related]
13. Roles of key active-site residues in flavocytochrome P450 BM3. Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains. Noble MA; Girvan HM; Smith SJ; Smith WE; Murataliev M; Guzov VM; Feyereisen R; Munro AW Drug Metab Rev; 2007; 39(2-3):599-617. PubMed ID: 17786641 [TBL] [Abstract][Full Text] [Related]
15. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI. Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930 [TBL] [Abstract][Full Text] [Related]
16. Oxygen activation and electron transfer in flavocytochrome P450 BM3. Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735 [TBL] [Abstract][Full Text] [Related]
17. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate. Loughran PA; Roman LJ; Miller RT; Masters BS Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012 [TBL] [Abstract][Full Text] [Related]
18. Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents. Eiben S; Bartelmäs H; Urlacher VB Appl Microbiol Biotechnol; 2007 Jul; 75(5):1055-61. PubMed ID: 17468867 [TBL] [Abstract][Full Text] [Related]
19. Are branched chain fatty acids the natural substrates for P450(BM3)? Cryle MJ; Espinoza RD; Smith SJ; Matovic NJ; De Voss JJ Chem Commun (Camb); 2006 Jun; (22):2353-5. PubMed ID: 16733577 [TBL] [Abstract][Full Text] [Related]
20. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain. Black SD Biochem Biophys Res Commun; 1994 Aug; 203(1):162-8. PubMed ID: 8074651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]