These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15122974)
1. Influence of immobilization stress on the levels of CaMKII and phospho-CaMKII in the rat hippocampus. Suenaga T; Morinobu S; Kawano K; Sawada T; Yamawaki S Int J Neuropsychopharmacol; 2004 Sep; 7(3):299-309. PubMed ID: 15122974 [TBL] [Abstract][Full Text] [Related]
2. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
3. [Influence of stress on the activation of CaMKII in the brain]. Suenaga T; Morinobu S; Yamawaki S Nihon Shinkei Seishin Yakurigaku Zasshi; 2006 Aug; 26(4):169-75. PubMed ID: 17020133 [TBL] [Abstract][Full Text] [Related]
4. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Haberny SL; Carr KD Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708 [TBL] [Abstract][Full Text] [Related]
5. Serotonin 5-HT receptor blockade enhances Ca(2+)/calmodulin-dependent protein kinase II function and membrane expression of AMPA receptor subunits in the rat hippocampus: implications for memory formation. Schiapparelli L; Del Río J; Frechilla D J Neurochem; 2005 Aug; 94(4):884-95. PubMed ID: 16092936 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of phosphatase activity facilitates the formation and maintenance of NMDA-induced calcium/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Tao-Cheng JH; Vinade L; Winters CA; Reese TS; Dosemeci A Neuroscience; 2005; 130(3):651-6. PubMed ID: 15590149 [TBL] [Abstract][Full Text] [Related]
7. Acute and chronic effects of MDMA on molecular mechanisms implicated in memory formation in rat hippocampus: surface expression of CaMKII and NMDA receptor subunits. Moyano S; Del Río J; Frechilla D Pharmacol Biochem Behav; 2005 Sep; 82(1):190-9. PubMed ID: 16154187 [TBL] [Abstract][Full Text] [Related]
8. [MK-801 or DNQX reduces electroconvulsive shock-induced impairment of learning-memory and hyperphosphorylation of Tau in rats]. Liu C; Min S; Wei K; Liu D; Dong J; Luo J; Liu XB Sheng Li Xue Bao; 2012 Aug; 64(4):387-402. PubMed ID: 22907299 [TBL] [Abstract][Full Text] [Related]
9. Somatostatin-induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, protein kinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. Pittaluga A; Feligioni M; Longordo F; Arvigo M; Raiteri M J Pharmacol Exp Ther; 2005 Apr; 313(1):242-9. PubMed ID: 15608072 [TBL] [Abstract][Full Text] [Related]
10. N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium. Zamzow CR; Bose R; Parkinson FE Can J Physiol Pharmacol; 2009 Oct; 87(10):850-8. PubMed ID: 20052011 [TBL] [Abstract][Full Text] [Related]
11. N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II in rat hippocampus after cerebral ischemia. Wu HW; Li HF; Guo J Neurosci Bull; 2007 Mar; 23(2):107-12. PubMed ID: 17592533 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of Ca2+/calmodulin-dependent protein kinase type ii and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (ampa) receptor in response to a threonine-devoid diet. Sharp JW; Ross CM; Koehnle TJ; Gietzen DW Neuroscience; 2004; 126(4):1053-62. PubMed ID: 15207338 [TBL] [Abstract][Full Text] [Related]
13. Lack of PSD-95 drives hippocampal neuronal cell death through activation of an alpha CaMKII transduction pathway. Gardoni F; Bellone C; Viviani B; Marinovich M; Meli E; Pellegrini-Giampietro DE; Cattabeni F; Di Luca M Eur J Neurosci; 2002 Sep; 16(5):777-86. PubMed ID: 12372013 [TBL] [Abstract][Full Text] [Related]
14. Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor. Kamat PK; Rai S; Swarnkar S; Shukla R; Ali S; Najmi AK; Nath C Neuroscience; 2013 May; 238():97-113. PubMed ID: 23415789 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor-specific inhibition of prolactin and corticotropin release. Zelena D; Makara GB; Jezova D Neuroendocrinology; 1999 May; 69(5):316-23. PubMed ID: 10343172 [TBL] [Abstract][Full Text] [Related]
16. Interaction with the NMDA receptor locks CaMKII in an active conformation. Bayer KU; De Koninck P; Leonard AS; Hell JW; Schulman H Nature; 2001 Jun; 411(6839):801-5. PubMed ID: 11459059 [TBL] [Abstract][Full Text] [Related]
17. Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Ramis M; Sarubbo F; Sola J; Aparicio S; Garau C; Miralles A; Esteban S Prog Neuropsychopharmacol Biol Psychiatry; 2013 Aug; 45():11-20. PubMed ID: 23590874 [TBL] [Abstract][Full Text] [Related]
18. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396 [TBL] [Abstract][Full Text] [Related]
19. Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons. Gu Z; Jiang Q; Yuen EY; Yan Z Mol Pharmacol; 2006 Mar; 69(3):813-22. PubMed ID: 16365279 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus. Pandis C; Sotiriou E; Kouvaras E; Asprodini E; Papatheodoropoulos C; Angelatou F Neuroscience; 2006 Jun; 140(1):163-75. PubMed ID: 16542781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]