BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15123199)

  • 1. Calcium regulation in crustaceans during the molt cycle: a review and update.
    Ahearn GA; Mandal PK; Mandal A
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):247-57. PubMed ID: 15123199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum.
    Mandal PK; Mandal A; Ahearn GA
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):515-26. PubMed ID: 15945071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium homeostasis in crustaceans: subcellular Ca dynamics.
    Wheatly MG; Zanotto FP; Hubbard MG
    Comp Biochem Physiol B Biochem Mol Biol; 2002 May; 132(1):163-78. PubMed ID: 11997219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paradox of epithelial cell calcium homeostasis during vectorial transfer in crayfish kidney.
    Wheatly MG; Gao Y; Gillen CM
    Gen Comp Endocrinol; 2007; 152(2-3):267-72. PubMed ID: 17537439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of sarco/endoplasmic and plasma membrane calcium ATPase gene expression by calcium in cultured human lens epithelial cells.
    Marian MJ; Mukhopadhyay P; Borchman D; Tang D; Paterson CA
    Cell Calcium; 2007 Jan; 41(1):87-95. PubMed ID: 16875731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-transporters in myocardial cells.
    Subramani S; Subbanna PK
    Indian J Physiol Pharmacol; 2006; 50(2):99-113. PubMed ID: 17051729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of NCX and PMCA in basolateral calcium export associated with mineralization cycles and cold acclimation in crayfish.
    Wheatly MG; Gao Y; Stiner LM; Whalen DR; Nade M; Vigo F; Golshani AE
    Ann N Y Acad Sci; 2007 Mar; 1099():190-2. PubMed ID: 17446457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport processes of crustacean epithelial cells.
    Ahearn GA; Duerr JM; Zhuang Z; Brown RJ; Aslamkhan A; Killebrew DA
    Physiol Biochem Zool; 1999; 72(1):1-18. PubMed ID: 9882598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel subcellular and molecular tools to study Ca(2+) transport mechanisms during the elusive moulting stages of crustaceans: flow cytometry and polyclonal antibodies.
    Wheatly M; Zhang Z; Weil J; Rogers J; Stiner L
    J Exp Biol; 2001 Mar; 204(Pt 5):959-66. PubMed ID: 11171419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarco/endoplasmic-reticulum calcium ATPase SERCA1 is maintained in the endoplasmic reticulum by a retrieval signal located between residues 1 and 211.
    Newton T; Black JP; Butler J; Lee AG; Chad J; East JM
    Biochem J; 2003 May; 371(Pt 3):775-82. PubMed ID: 12585965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium pumps in the central nervous system.
    Mata AM; Sepúlveda MR
    Brain Res Brain Res Rev; 2005 Sep; 49(2):398-405. PubMed ID: 16111566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A developmental profile of the levels of calcium pumps in chick cerebellum.
    Sepúlveda MR; Hidalgo-Sánchez M; Mata AM
    J Neurochem; 2005 Nov; 95(3):673-83. PubMed ID: 16104848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium homeostasis in crustacea: the evolving role of branchial, renal, digestive and hypodermal epithelia.
    Wheatly MG
    J Exp Zool; 1999 Jun; 283(7):620-40. PubMed ID: 10222589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of endoplasmic reticulum and plasma membrane Ca2+-ATPases in subcellular fractions and sections of pig cerebellum.
    Sepúlveda MR; Hidalgo-Sánchez M; Mata AM
    Eur J Neurosci; 2004 Feb; 19(3):542-51. PubMed ID: 14984405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth muscle.
    Fameli N; van Breemen C; Kuo KH
    Cell Calcium; 2007 Dec; 42(6):565-75. PubMed ID: 17418403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium signaling differentiation during Xenopus oocyte maturation.
    El-Jouni W; Jang B; Haun S; Machaca K
    Dev Biol; 2005 Dec; 288(2):514-25. PubMed ID: 16330019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium transporters and signalling in smooth muscles.
    Floyd R; Wray S
    Cell Calcium; 2007; 42(4-5):467-76. PubMed ID: 17624426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of P-glycoprotein in L1210/VCR cells is associated with changes in several endoplasmic reticulum proteins that may be partially responsible for the lack of thapsigargin sensitivity.
    Seres M; Poláková E; Krizanová O; Hudecová S; Klymenko SV; Breier A; Sulová Z
    Gen Physiol Biophys; 2008 Sep; 27(3):211-21. PubMed ID: 18981537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipating antiport in P-type ATPases.
    Niggli V; Sigel E
    Trends Biochem Sci; 2008 Apr; 33(4):156-60. PubMed ID: 18343670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and expression of plasma membrane Ca2+ ATPase (PMCA3) in the crayfish Procambarus clarkii antennal gland during molting.
    Gao Y; Wheatly MG
    J Exp Biol; 2004 Aug; 207(Pt 17):2991-3002. PubMed ID: 15277554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.