BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15123284)

  • 41. Synthesis and Biological Evaluation of Novel Epothilone B Side Chain Analogues.
    Nicolaou KC; Rhoades D; Wang Y; Totokotsopoulos S; Bai R; Hamel E
    ChemMedChem; 2015 Dec; 10(12):1974-9. PubMed ID: 26447977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin.
    Gupta K; Bishop J; Peck A; Brown J; Wilson L; Panda D
    Biochemistry; 2004 Jun; 43(21):6645-55. PubMed ID: 15157098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Laulimalide and paclitaxel: a comparison of their effects on tubulin assembly and their synergistic action when present simultaneously.
    Gapud EJ; Bai R; Ghosh AK; Hamel E
    Mol Pharmacol; 2004 Jul; 66(1):113-21. PubMed ID: 15213302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations.
    Jiménez VA; Alderete JB; Navarrete KR
    J Biomol Struct Dyn; 2015; 33(4):789-803. PubMed ID: 24773261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of ring-closing metathesis reactions in the synthesis of epothilones.
    Rivkin A; Cho YS; Gabarda AE; Yoshimura F; Danishefsky SJ
    J Nat Prod; 2004 Feb; 67(2):139-43. PubMed ID: 14987048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of substituent modifications on DNA binding energetics of acridine-based anticancer agents.
    Hutchins RA; Crenshaw JM; Graves DE; Denny WA
    Biochemistry; 2003 Nov; 42(46):13754-61. PubMed ID: 14622022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paclitaxel binding to the fatty acid-induced conformation of human serum albumin--automated docking studies.
    Paal K; Shkarupin A
    Bioorg Med Chem; 2007 Dec; 15(24):7568-75. PubMed ID: 17892938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and biological activities of new 1alpha,25-dihydroxy-19-norvitamin D3 analogs with modifications in both the A-ring and the side chain.
    Shimizu M; Miyamoto Y; Kobayashi E; Shimazaki M; Yamamoto K; Reischl W; Yamada S
    Bioorg Med Chem; 2006 Jun; 14(12):4277-94. PubMed ID: 16503143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design, synthesis, and biological evaluation of artificial macrosphelides in the search for new apoptosis-inducing agents.
    Matsuya Y; Kobayashi Y; Kawaguchi T; Hori A; Watanabe Y; Ishihara K; Ahmed K; Wei ZL; Yu DY; Zhao QL; Kondo T; Nemoto H
    Chemistry; 2009 Jun; 15(23):5799-813. PubMed ID: 19370747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis, anticancer activity and cytotoxicity of galactosylated epothilone B.
    Gao H; Huang G
    Bioorg Med Chem; 2018 Nov; 26(20):5578-5581. PubMed ID: 30318441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural insight into the mechanism of epothilone A bound to beta-tubulin and its mutants at Arg282Gln and Thr274Ile.
    Shi G; Wang Y; Jin Y; Chi S; Shi Q; Ge M; Wang S; Zhang X; Xu S
    J Biomol Struct Dyn; 2012; 30(5):559-73. PubMed ID: 22731768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A rational design of bioactive taxanes with side chains situated elsewhere than on C-13.
    Wu JH; Zamir LO
    Anticancer Drug Des; 2000 Feb; 15(1):73-8. PubMed ID: 10888038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Total synthesis of epothilone a through stereospecific epoxidation of the p-methoxybenzyl ether of epothilone C.
    Liu ZY; Chen ZC; Yu CZ; Wang RF; Zhang RZ; Huang CS; Yan Z; Cao DR; Sun JB; Li G
    Chemistry; 2002 Aug; 8(16):3747-56. PubMed ID: 12203301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The chemistry and biology of epothilones--the wheel keeps turning.
    Altmann KH; Pfeiffer B; Arseniyadis S; Pratt BA; Nicolaou KC
    ChemMedChem; 2007 Apr; 2(4):396-423. PubMed ID: 17340668
    [No Abstract]   [Full Text] [Related]  

  • 55. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity.
    Jiménez VA; Alderete JB; Navarrete KR
    Chem Biol Drug Des; 2017 Dec; 90(6):1247-1259. PubMed ID: 28632973
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The high-resolution solution structure of epothilone A bound to tubulin: an understanding of the structure-activity relationships for a powerful class of antitumor agents.
    Carlomagno T; Blommers MJ; Meiler J; Jahnke W; Schupp T; Petersen F; Schinzer D; Altmann KH; Griesinger C
    Angew Chem Int Ed Engl; 2003 Jun; 42(22):2511-5. PubMed ID: 12800173
    [No Abstract]   [Full Text] [Related]  

  • 57. Synthesis and biological properties of C12,13-cyclopropyl-epothilone A and related epothilones.
    Nicolaou KC; Finlay MR; Ninkovic S; King NP; He Y; Li T; Sarabia F; Vourloumis D
    Chem Biol; 1998 Jul; 5(7):365-72. PubMed ID: 9662505
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational study of binding of epothilone A to β-tubulin.
    Kamel K; Kolinski A
    Acta Biochim Pol; 2011; 58(2):255-60. PubMed ID: 21633729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of 4-arylcoumarin analogues of combretastatins with microtubule network of HBL100 cells and binding to tubulin.
    Rappl C; Barbier P; Bourgarel-Rey V; Grégoire C; Gilli R; Carre M; Combes S; Finet JP; Peyrot V
    Biochemistry; 2006 Aug; 45(30):9210-8. PubMed ID: 16866367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epothilones: mechanism of action and biologic activity.
    Goodin S; Kane MP; Rubin EH
    J Clin Oncol; 2004 May; 22(10):2015-25. PubMed ID: 15143095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.