BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15123284)

  • 81. Site occupancy calibration of taxane pharmacology in live cells and tissues.
    Pineda JJ; Miller MA; Song Y; Kuhn H; Mikula H; Tallapragada N; Weissleder R; Mitchison TJ
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11406-E11414. PubMed ID: 30429313
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Design, synthesis and biological evaluation of novel, simplified analogues of laulimalide: modification of the side chain.
    Paterson I; Menche D; Håkansson AE; Longstaff A; Wong D; Barasoain I; Buey RM; Díaz JF
    Bioorg Med Chem Lett; 2005 May; 15(9):2243-7. PubMed ID: 15837302
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Modulation of paclitaxel transport by flavonoid derivatives in human breast cancer cells. Is there a correlation between binding affinity to NBD of P-gp and modulation of transport?
    Václavíková R; Boumendjel A; Ehrlichová M; Kovár J; Gut I
    Bioorg Med Chem; 2006 Jul; 14(13):4519-25. PubMed ID: 16516478
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 4. The natural products epothilones A and B as lead structures for anticancer drug discovery: chemistry, biology, and SAR studies.
    Altmann KH; Flörsheimer A; O'Reilly T; Wartmann M
    Prog Med Chem; 2004; 42():171-205. PubMed ID: 15003721
    [No Abstract]   [Full Text] [Related]  

  • 85. Generation of novel epothilone analogs with cytotoxic activity by biotransformation.
    Tang L; Qiu RG; Li Y; Katz L
    J Antibiot (Tokyo); 2003 Jan; 56(1):16-23. PubMed ID: 12670045
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Design, synthesis and cytotoxicity of novel 3'-N-alkoxycarbonyl docetaxel analogs.
    Chang J; Hao XD; Hao YP; Lu HF; Yu JM; Sun X
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6834-7. PubMed ID: 24269481
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Synthesis, Microtubule-Binding Affinity, and Antiproliferative Activity of New Epothilone Analogs and of an EGFR-Targeted Epothilone-Peptide Conjugate.
    Gaugaz FZ; Chicca A; Redondo-Horcajo M; Barasoain I; Díaz JF; Altmann KH
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30841526
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biosynthesis of epothilone intermediates with alternate starter units: engineering polyketide-nonribosomal interfaces.
    O'Connor SE; Walsh CT; Liu F
    Angew Chem Int Ed Engl; 2003 Aug; 42(33):3917-21. PubMed ID: 12949868
    [No Abstract]   [Full Text] [Related]  

  • 89. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent.
    Kingston DG; Snyder JP
    Acc Chem Res; 2014 Aug; 47(8):2682-91. PubMed ID: 25052294
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Application of REDOR NMR to Understand the Conformation of Epothilone B.
    Lee JH; Kim MS; Lee HW; Lee IC; Kim HK; Kim ND; Lee S; Seo H; Paik Y
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28698492
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Optimization of fermentation conditions for the production of epothilone B.
    Long R; Yang W; Huang G
    Chem Biol Drug Des; 2020 Aug; 96(2):768-772. PubMed ID: 32167676
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chemical synthesis and biological evaluation of cis- and trans-12,13-cyclopropyl and 12,13-cyclobutyl epothilones and related pyridine side chain analogues.
    Nicolaou KC; Namoto K; Ritzén A; Ulven T; Shoji M; Li J; D'Amico G; Liotta D; French CT; Wartmann M; Altmann KH; Giannakakou P
    J Am Chem Soc; 2001 Sep; 123(38):9313-23. PubMed ID: 11562214
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Two 18-membered epothilones from Sorangium cellulosum So0157-2.
    Lu C; Liu X; Li Y; Shen Y
    J Antibiot (Tokyo); 2010 Sep; 63(9):571-4. PubMed ID: 20606695
    [No Abstract]   [Full Text] [Related]  

  • 94. Analysis of the binding mode of laulimalide to microtubules: Establishing a laulimalide-tubulin pharmacophore.
    Churchill CD; Klobukowski M; Tuszynski JA
    J Biomol Struct Dyn; 2016 Jul; 34(7):1455-69. PubMed ID: 26230757
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The interaction of microtubules with stabilizers characterized at biochemical and structural levels.
    Díaz JF; Andreu JM; Jiménez-Barbero J
    Top Curr Chem; 2009; 286():121-49. PubMed ID: 23563612
    [TBL] [Abstract][Full Text] [Related]  

  • 96. What makes epothilones stick?
    Kingston DG
    Chem Biol; 2004 Feb; 11(2):153-5. PubMed ID: 15123274
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characterizing ligand-microtubule binding by competition methods.
    Díaz JF; Buey RM
    Methods Mol Med; 2007; 137():245-60. PubMed ID: 18085234
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Oxidative and reductive transformations of epothilone A.
    Sefkow M; Kiffe M; Schummer D; Höfle G
    Bioorg Med Chem Lett; 1998 Nov; 8(21):3025-30. PubMed ID: 9873669
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structural modifications of the ergopeptine molecule and their differential influence on the affinities to different receptor binding sites--a structure affinity analysis.
    Closse A; Bolliger G; Dravid A; Frick W; Hauser D; Pfäffli P; Sauter A; Tobler HJ
    Adv Biochem Psychopharmacol; 1983; 36():269-79. PubMed ID: 6305153
    [No Abstract]   [Full Text] [Related]  

  • 100. Epothilones: a new generation of microtubule-stabilizing compounds.
    Le Chevalier T
    Suppl Tumori; 2002; 1(4):S13-4. PubMed ID: 12415806
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.