BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 15123662)

  • 21. Structural requirements for PAK activation by Rac GTPases.
    Knaus UG; Wang Y; Reilly AM; Warnock D; Jackson JH
    J Biol Chem; 1998 Aug; 273(34):21512-8. PubMed ID: 9705280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Rac effector p67phox regulates phagocyte NADPH oxidase by stimulating Vav1 guanine nucleotide exchange activity.
    Ming W; Li S; Billadeau DD; Quilliam LA; Dinauer MC
    Mol Cell Biol; 2007 Jan; 27(1):312-23. PubMed ID: 17060455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase.
    Kosami K; Ohki I; Nagano M; Furuita K; Sugiki T; Kawano Y; Kawasaki T; Fujiwara T; Nakagawa A; Shimamoto K; Kojima C
    J Biol Chem; 2014 Oct; 289(41):28569-78. PubMed ID: 25128531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells.
    Wojciak-Stothard B; Tsang LY; Haworth SG
    Am J Physiol Lung Cell Mol Physiol; 2005 Apr; 288(4):L749-60. PubMed ID: 15591411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide.
    Kreck ML; Uhlinger DJ; Tyagi SR; Inge KL; Lambeth JD
    J Biol Chem; 1994 Feb; 269(6):4161-8. PubMed ID: 8307977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of compensatory pathways via Rac2 in the absence of the Cdc42 effector Wiskott-Aldrich syndrome protein in Dendritic cells.
    Baptista MAP; Westerberg LS
    Small GTPases; 2019 Mar; 10(2):81-88. PubMed ID: 28129089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species.
    Bäumer AT; Ten Freyhaus H; Sauer H; Wartenberg M; Kappert K; Schnabel P; Konkol C; Hescheler J; Vantler M; Rosenkranz S
    J Biol Chem; 2008 Mar; 283(12):7864-76. PubMed ID: 18070887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent.
    Faure MC; Sulpice JC; Delattre M; Lavielle M; Prigent M; Cuif MH; Melchior C; Tschirhart E; Nüße O; Dupré-Crochet S
    Biol Cell; 2013 Nov; 105(11):501-18. PubMed ID: 23870057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of wild-type or mutant Rac2 and Rap1a GTPases in differentiated HL60 cell NADPH oxidase activation.
    Gabig TG; Crean CD; Mantel PL; Rosli R
    Blood; 1995 Feb; 85(3):804-11. PubMed ID: 7833480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fusion protein between rac and p67phox (1-210) reconstitutes NADPH oxidase with higher activity and stability than the individual components.
    Miyano K; Ogasawara S; Han CH; Fukuda H; Tamura M
    Biochemistry; 2001 Nov; 40(46):14089-97. PubMed ID: 11705402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ras-related GTPases and the cytoskeleton.
    Hall A
    Mol Biol Cell; 1992 May; 3(5):475-9. PubMed ID: 1611153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Participation of Rac GTPase activating proteins in the deactivation of the phagocytic NADPH oxidase.
    Moskwa P; Dagher MC; Paclet MH; Morel F; Ligeti E
    Biochemistry; 2002 Aug; 41(34):10710-6. PubMed ID: 12186557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.
    Wong HL; Pinontoan R; Hayashi K; Tabata R; Yaeno T; Hasegawa K; Kojima C; Yoshioka H; Iba K; Kawasaki T; Shimamoto K
    Plant Cell; 2007 Dec; 19(12):4022-34. PubMed ID: 18156215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome.
    Aspenström P; Lindberg U; Hall A
    Curr Biol; 1996 Jan; 6(1):70-5. PubMed ID: 8805223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rac "insert region" is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65.
    Freeman JL; Abo A; Lambeth JD
    J Biol Chem; 1996 Aug; 271(33):19794-801. PubMed ID: 8702687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase.
    Diebold BA; Bokoch GM
    Nat Immunol; 2001 Mar; 2(3):211-5. PubMed ID: 11224519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of neutrophil function by Rac GTPases.
    Dinauer MC
    Curr Opin Hematol; 2003 Jan; 10(1):8-15. PubMed ID: 12483106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation.
    Rudolph MG; Bayer P; Abo A; Kuhlmann J; Vetter IR; Wittinghofer A
    J Biol Chem; 1998 Jul; 273(29):18067-76. PubMed ID: 9660763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.
    Koshkin V; Lotan O; Pick E
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase.
    Koga H; Terasawa H; Nunoi H; Takeshige K; Inagaki F; Sumimoto H
    J Biol Chem; 1999 Aug; 274(35):25051-60. PubMed ID: 10455184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.