These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15123698)

  • 1. Regulation of the mammalian circadian clock by cryptochrome.
    Sancar A
    J Biol Chem; 2004 Aug; 279(33):34079-82. PubMed ID: 15123698
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.
    Kobayashi Y; Ishikawa T; Hirayama J; Daiyasu H; Kanai S; Toh H; Fukuda I; Tsujimura T; Terada N; Kamei Y; Yuba S; Iwai S; Todo T
    Genes Cells; 2000 Sep; 5(9):725-38. PubMed ID: 10971654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
    Hitomi K; DiTacchio L; Arvai AS; Yamamoto J; Kim ST; Todo T; Tainer JA; Iwai S; Panda S; Getzoff ED
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6962-7. PubMed ID: 19359474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Proteins of the DNA Photolyase/Cryptochrome Family.
    Vechtomova YL; Telegina TA; Kritsky MS
    Biochemistry (Mosc); 2020 Jan; 85(Suppl 1):S131-S153. PubMed ID: 32087057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock.
    Thompson CL; Sancar A
    Oncogene; 2002 Dec; 21(58):9043-56. PubMed ID: 12483519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of human blue-light photoreceptor cryptochrome 2.
    Ozgur S; Sancar A
    Biochemistry; 2003 Mar; 42(10):2926-32. PubMed ID: 12627958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure function analysis of mammalian cryptochromes.
    Tamanini F; Chaves I; Bajek MI; van der Horst GT
    Cold Spring Harb Symp Quant Biol; 2007; 72():133-9. PubMed ID: 18419270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptochromes and circadian photoreception in animals.
    Partch CL; Sancar A
    Methods Enzymol; 2005; 393():726-45. PubMed ID: 15817321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
    Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17696-700. PubMed ID: 17062752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a new cryptochrome class. Structure, function, and evolution.
    Brudler R; Hitomi K; Daiyasu H; Toh H; Kucho K; Ishiura M; Kanehisa M; Roberts VA; Todo T; Tainer JA; Getzoff ED
    Mol Cell; 2003 Jan; 11(1):59-67. PubMed ID: 12535521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolyase and cryptochrome blue-light photoreceptors.
    Sancar A
    Adv Protein Chem; 2004; 69():73-100. PubMed ID: 15588840
    [No Abstract]   [Full Text] [Related]  

  • 12. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors.
    Kavakli IH; Baris I; Tardu M; Gül Ş; Öner H; Çal S; Bulut S; Yarparvar D; Berkel Ç; Ustaoğlu P; Aydın C
    Photochem Photobiol; 2017 Jan; 93(1):93-103. PubMed ID: 28067410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of DNA photolyases.
    Sancar GB; Sancar A
    Methods Enzymol; 2006; 408():121-56. PubMed ID: 16793367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptochromes: blue light receptors for plants and animals.
    Cashmore AR; Jarillo JA; Wu YJ; Liu D
    Science; 1999 Apr; 284(5415):760-5. PubMed ID: 10221900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance.
    Chaves I; Yagita K; Barnhoorn S; Okamura H; van der Horst GT; Tamanini F
    Mol Cell Biol; 2006 Mar; 26(5):1743-53. PubMed ID: 16478995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5.
    Partch CL; Shields KF; Thompson CL; Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10467-10472. PubMed ID: 16790549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian clock: time for a phase shift of ideas?
    Merrow M; Roenneberg T
    Curr Biol; 2007 Aug; 17(16):R636-8. PubMed ID: 17714651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
    Fan Y; Hida A; Anderson DA; Izumo M; Johnson CH
    Curr Biol; 2007 Jul; 17(13):1091-100. PubMed ID: 17583506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting molecular loops in the mammalian circadian clock.
    Shearman LP; Sriram S; Weaver DR; Maywood ES; Chaves I; Zheng B; Kume K; Lee CC; van der Horst GT; Hastings MH; Reppert SM
    Science; 2000 May; 288(5468):1013-9. PubMed ID: 10807566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [DNA photolyase/cryptochrome protein family].
    Todo T
    Tanpakushitsu Kakusan Koso; 2001 Jun; 46(8 Suppl):950-8. PubMed ID: 11436321
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.