These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

972 related articles for article (PubMed ID: 15123812)

  • 1. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
    Mathews DH; Disney MD; Childs JL; Schroeder SJ; Zuker M; Turner DH
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7287-92. PubMed ID: 15123812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
    Mathews DH; Sabina J; Zuker M; Turner DH
    J Mol Biol; 1999 May; 288(5):911-40. PubMed ID: 10329189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction.
    Doshi KJ; Cannone JJ; Cobaugh CW; Gutell RR
    BMC Bioinformatics; 2004 Aug; 5():105. PubMed ID: 15296519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
    Sloma MF; Mathews DH
    RNA; 2016 Dec; 22(12):1808-1818. PubMed ID: 27852924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous prediction of RNA secondary structure and helix coaxial stacking.
    Shareghi P; Wang Y; Malmberg R; Cai L
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S7. PubMed ID: 22759616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting a set of minimal free energy RNA secondary structures common to two sequences.
    Mathews DH
    Bioinformatics; 2005 May; 21(10):2246-53. PubMed ID: 15731207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structure models of the 3' untranslated regions of diverse R2 RNAs.
    Ruschak AM; Mathews DH; Bibillo A; Spinelli SL; Childs JL; Eickbush TH; Turner DH
    RNA; 2004 Jun; 10(6):978-87. PubMed ID: 15146081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding.
    Walter AE; Turner DH; Kim J; Lyttle MH; Müller P; Mathews DH; Zuker M
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9218-22. PubMed ID: 7524072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex.
    Butcher SE; Burke JM
    J Mol Biol; 1994 Nov; 244(1):52-63. PubMed ID: 7966321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures.
    d'Aubenton Carafa Y; Brody E; Thermes C
    J Mol Biol; 1990 Dec; 216(4):835-58. PubMed ID: 1702475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization.
    Mathews DH
    RNA; 2004 Aug; 10(8):1178-90. PubMed ID: 15272118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling.
    Brunel C; Romby P; Westhof E; Ehresmann C; Ehresmann B
    J Mol Biol; 1991 Sep; 221(1):293-308. PubMed ID: 1717695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling.
    Dolan MA; Babin P; Wollenzien P
    J Mol Graph Model; 2001; 19(6):495-513. PubMed ID: 11552678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus.
    Alford RL; Honda S; Lawrence CB; Belmont JW
    Virology; 1991 Aug; 183(2):611-9. PubMed ID: 1853563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications.
    Rastegari B; Condon A
    J Comput Biol; 2007; 14(1):16-32. PubMed ID: 17381343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct probing of RNA structures and RNA-protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization fourier transform mass spectrometry.
    Yu E; Fabris D
    J Mol Biol; 2003 Jul; 330(2):211-23. PubMed ID: 12823962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The 5S rRNA-protein complex of Escherichia coli studied by carbodiimide modification].
    Dontsova OA; Efimov AV; Kopylov AM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (2):22-30. PubMed ID: 1693861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing.
    Lentzen G; Moine H; Ehresmann C; Ehresmann B; Wintermeyer W
    RNA; 1996 Mar; 2(3):244-53. PubMed ID: 8608448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.