These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15125)

  • 41. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy coupling in the transport of beta-galactosides by Escherichia coli: effect of proton conductors.
    Pavlasova E; Harold FM
    J Bacteriol; 1969 Apr; 98(1):198-204. PubMed ID: 4889268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-exposure model for proton-lactose symport in Escherichia coli.
    Lancaster JR
    J Theor Biol; 1978 Nov; 75(1):35-50. PubMed ID: 34066
    [No Abstract]   [Full Text] [Related]  

  • 45. Requirement for membrane potential in active transport of glutamine by Escherichia coli.
    Plate CA
    J Bacteriol; 1979 Jan; 137(1):221-5. PubMed ID: 153897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):583-9. PubMed ID: 6282254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.
    Ahmed S; Booth IR
    Biochem J; 1983 Apr; 212(1):105-12. PubMed ID: 6307285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mode of action of colicin Ia: effect of colicin on the Escherichia coli proton electrochemical gradient.
    Tokuda H; Konisky J
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2579-83. PubMed ID: 26912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow.
    Kaczorowski GJ; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3691-7. PubMed ID: 38836
    [No Abstract]   [Full Text] [Related]  

  • 51. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport.
    Wright JK; Overath P
    Eur J Biochem; 1984 Feb; 138(3):497-508. PubMed ID: 6363073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of growth of Escherichia coli by lactose and other galactosides.
    Wilson DM; Putzrath RM; Wilson TH
    Biochim Biophys Acta; 1981 Dec; 649(2):377-84. PubMed ID: 7032592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient-coupled transport.
    Lancaster JR; Hinkle PC
    J Biol Chem; 1977 Nov; 252(21):7657-61. PubMed ID: 21183
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Na+-dependent methyl beta-thiogalactoside transport in Salmonella typhimurium.
    van Thienen GM; Postma PW; van Dam K
    Biochim Biophys Acta; 1978 Nov; 513(3):395-400. PubMed ID: 31175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of osmotic pressure on membrane energy-linked functions in Escherichia coli.
    Houssin C; Eynard N; Shechter E; Ghazi A
    Biochim Biophys Acta; 1991 Jan; 1056(1):76-84. PubMed ID: 1984787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between oxygen-induced proton efflux and membrane energization in cells of Escherichia coli.
    Gould JM; Cramer WA
    J Biol Chem; 1977 Aug; 252(16):5875-82. PubMed ID: 18476
    [No Abstract]   [Full Text] [Related]  

  • 60. Electrochemical proton gradient of Brevibacterium linens and its relationship to phenylalanine transport.
    Boyaval P; Moreira E; Desmazeaud MJ
    Ann Microbiol (Paris); 1984; 135B(1):91-9. PubMed ID: 6095716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.