These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15125655)

  • 41. Can Arabidopsis make complex alkaloids?
    Facchini PJ; Bird DA; St-Pierre B
    Trends Plant Sci; 2004 Mar; 9(3):116-22. PubMed ID: 15003234
    [No Abstract]   [Full Text] [Related]  

  • 42. Plant biologists fear for cress project.
    Ledford H
    Nature; 2010 Mar; 464(7286):154. PubMed ID: 20220813
    [No Abstract]   [Full Text] [Related]  

  • 43. Functional genomics at the Arabidopsis meeting.
    van de Sande K; Leyser O
    Yeast; 2000 Sep; 17(3):235-7. PubMed ID: 11025535
    [No Abstract]   [Full Text] [Related]  

  • 44. Spatio-Temporal Variation of Terpenoids in Wild Plants of Pentalinon andrieuxii.
    Hiebert-Giesbrecht MR; Escalante-Erosa F; García-Sosa K; Dzib GR; Calvo-Irabien LM; Peña-Rodríguez LM
    Chem Biodivers; 2016 Nov; 13(11):1521-1526. PubMed ID: 27454709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Power Up Plant Genetic Research with Genomic Data.
    Li MW; Isobe S; Lam HM
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymic synthesis of beta-amyrin from 2,3-oxidosqualene.
    Corey EJ; Ortiz de Montellano PR
    J Am Chem Soc; 1967 Jun; 89(13):3362-3. PubMed ID: 6042774
    [No Abstract]   [Full Text] [Related]  

  • 47. OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata.
    Yang C; Halitschke R; O'Connor SE
    Plant Physiol; 2024 Mar; 194(4):2580-2599. PubMed ID: 38101922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring the Biologically Active Metabolites Produced by
    Tsai SH; Hsiao YC; Chang PE; Kuo CE; Lai MC; Chuang HW
    Metabolites; 2023 May; 13(5):. PubMed ID: 37233717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of Arabidopsis non-reference accessions reveals high diversity of metabolic gene clusters and discovers new candidate cluster members.
    Marszalek-Zenczak M; Satyr A; Wojciechowski P; Zenczak M; Sobieszczanska P; Brzezinski K; Iefimenko T; Figlerowicz M; Zmienko A
    Front Plant Sci; 2023; 14():1104303. PubMed ID: 36778696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leveraging yeast to characterize plant biosynthetic gene clusters.
    Wu Y; Gong FL; Li S
    Curr Opin Plant Biol; 2023 Feb; 71():102314. PubMed ID: 36463029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mining genomes to illuminate the specialized chemistry of life.
    Medema MH; de Rond T; Moore BS
    Nat Rev Genet; 2021 Sep; 22(9):553-571. PubMed ID: 34083778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The enzymes OSC1 and CYP716A263 produce a high variety of triterpenoids in the latex of Taraxacum koksaghyz.
    Pütter KM; van Deenen N; Müller B; Fuchs L; Vorwerk K; Unland K; Bröker JN; Scherer E; Huber C; Eisenreich W; Prüfer D; Schulze Gronover C
    Sci Rep; 2019 Apr; 9(1):5942. PubMed ID: 30976052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene-guided discovery and engineering of branched cyclic peptides in plants.
    Kersten RD; Weng JK
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10961-E10969. PubMed ID: 30373830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis.
    Loeschcke A; Dienst D; Wewer V; Hage-Hülsmann J; Dietsch M; Kranz-Finger S; Hüren V; Metzger S; Urlacher VB; Gigolashvili T; Kopriva S; Axmann IM; Drepper T; Jaeger KE
    PLoS One; 2017; 12(12):e0189816. PubMed ID: 29281679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a Novel (-)-5-Epieremophilene Synthase from
    Fang X; Li CY; Yang Y; Cui MY; Chen XY; Yang L
    Front Plant Sci; 2017; 8():627. PubMed ID: 28487717
    [No Abstract]   [Full Text] [Related]  

  • 56. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor.
    Deane CD; Mitchell DA
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):315-31. PubMed ID: 24142337
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus.
    Huang L; Li J; Ye H; Li C; Wang H; Liu B; Zhang Y
    Planta; 2012 Nov; 236(5):1571-81. PubMed ID: 22837051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triterpenoid biosynthesis and engineering in plants.
    Sawai S; Saito K
    Front Plant Sci; 2011; 2():25. PubMed ID: 22639586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids.
    Wang Z; Guhling O; Yao R; Li F; Yeats TH; Rose JK; Jetter R
    Plant Physiol; 2011 Jan; 155(1):540-52. PubMed ID: 21059824
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.