BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15126402)

  • 1. Molecular and functional analysis of scalloped recessive lethal alleles in Drosophila melanogaster.
    Srivastava A; Simmonds AJ; Garg A; Fossheim L; Campbell SD; Bell JB
    Genetics; 2004 Apr; 166(4):1833-43. PubMed ID: 15126402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of scalloped deletion constructs to rescue sd mutant wing phenotypes in Drosophila melanogaster.
    Chow L; Berube J; Fromont A; Bell JB
    Genome; 2004 Oct; 47(5):849-59. PubMed ID: 15499399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation.
    Vaudin P; Delanoue R; Davidson I; Silber J; Zider A
    Development; 1999 Nov; 126(21):4807-16. PubMed ID: 10518497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Vestigial:Scalloped TEA domain chimera rescues the wing phenotype of a scalloped mutation in Drosophila melanogaster.
    Srivastava A; MacKay JO; Bell JB
    Genesis; 2002 May; 33(1):40-7. PubMed ID: 12001068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped.
    Magico AC; Bell JB
    PLoS One; 2011; 6(6):e21431. PubMed ID: 21731746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further developmental roles of the Vestigial/Scalloped transcription complex during wing development in Drosophila melanogaster.
    Srivastava A; Bell JB
    Mech Dev; 2003 May; 120(5):587-96. PubMed ID: 12782275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vivo analysis of the vestigial gene in Drosophila melanogaster defines the domains required for Vg function.
    MacKay JO; Soanes KH; Srivastava A; Simmonds A; Brook WJ; Bell JB
    Genetics; 2003 Apr; 163(4):1365-73. PubMed ID: 12702681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster.
    Paumard-Rigal S; Zider A; Vaudin P; Silber J
    Dev Genes Evol; 1998 Oct; 208(8):440-6. PubMed ID: 9799424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila.
    Simmonds AJ; Liu X; Soanes KH; Krause HM; Irvine KD; Bell JB
    Genes Dev; 1998 Dec; 12(24):3815-20. PubMed ID: 9869635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engrailed gene dosage determines whether certain recessive cubitus interruptus alleles exhibit dominance of the adult wing phenotype in Drosophila.
    Locke J; Hanna S
    Dev Genet; 1996; 19(4):340-9. PubMed ID: 9023986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional organization of the vestigial locus in Drosophila melanogaster.
    Williams JA; Atkin AL; Bell JB
    Mol Gen Genet; 1990 Mar; 221(1):8-16. PubMed ID: 2109180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle genes regulate vestigial and scalloped to ensure normal proliferation in the wing disc of Drosophila melanogaster.
    Legent K; Dutriaux A; Delanoue R; Silber J
    Genes Cells; 2006 Aug; 11(8):907-18. PubMed ID: 16866874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP family of transcription factors.
    George H; Terracol R
    Genetics; 1997 Aug; 146(4):1345-63. PubMed ID: 9258679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic and molecular analysis of an invectedDominant mutation in Drosophila melanogaster.
    Simmonds AJ; Bell JB
    Genome; 1998 Jun; 41(3):381-90. PubMed ID: 9729772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human transcription enhancer factor-1, TEF-1, can substitute for Drosophila scalloped during wingblade development.
    Deshpande N; Chopra A; Rangarajan A; Shashidhara LS; Rodrigues V; Krishna S
    J Biol Chem; 1997 Apr; 272(16):10664-8. PubMed ID: 9099715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A screen for modifiers of decapentaplegic mutant phenotypes identifies lilliputian, the only member of the Fragile-X/Burkitt's Lymphoma family of transcription factors in Drosophila melanogaster.
    Su MA; Wisotzkey RG; Newfeld SJ
    Genetics; 2001 Feb; 157(2):717-25. PubMed ID: 11156991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila.
    Goulev Y; Fauny JD; Gonzalez-Marti B; Flagiello D; Silber J; Zider A
    Curr Biol; 2008 Mar; 18(6):435-41. PubMed ID: 18313299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila.
    Campbell S; Inamdar M; Rodrigues V; Raghavan V; Palazzolo M; Chovnick A
    Genes Dev; 1992 Mar; 6(3):367-79. PubMed ID: 1547938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrity of the Mod(mdg4)-67.2 BTB domain is critical to insulator function in Drosophila melanogaster.
    Golovnin A; Mazur A; Kopantseva M; Kurshakova M; Gulak PV; Gilmore B; Whitfield WG; Geyer P; Pirrotta V; Georgiev P
    Mol Cell Biol; 2007 Feb; 27(3):963-74. PubMed ID: 17101769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curled encodes the Drosophila homolog of the vertebrate circadian deadenylase Nocturnin.
    Grönke S; Bickmeyer I; Wunderlich R; Jäckle H; Kühnlein RP
    Genetics; 2009 Sep; 183(1):219-32. PubMed ID: 19581445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.