These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 15126479)
1. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor. Van Way SM; Millas SG; Lee AH; Manson MD J Bacteriol; 2004 May; 186(10):3173-81. PubMed ID: 15126479 [TBL] [Abstract][Full Text] [Related]
2. Structural insight into the rotational switching mechanism of the bacterial flagellar motor. Minamino T; Imada K; Kinoshita M; Nakamura S; Morimoto YV; Namba K PLoS Biol; 2011 May; 9(5):e1000616. PubMed ID: 21572987 [TBL] [Abstract][Full Text] [Related]
3. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Lloyd SA; Whitby FG; Blair DF; Hill CP Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379 [TBL] [Abstract][Full Text] [Related]
4. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex. Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T mBio; 2019 Apr; 10(2):. PubMed ID: 30940700 [TBL] [Abstract][Full Text] [Related]
5. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis. Morehouse KA; Goodfellow IG; Sockett RE J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440 [TBL] [Abstract][Full Text] [Related]
6. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB. Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919 [TBL] [Abstract][Full Text] [Related]
7. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor. Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326 [TBL] [Abstract][Full Text] [Related]
8. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Lee LK; Ginsburg MA; Crovace C; Donohoe M; Stock D Nature; 2010 Aug; 466(7309):996-1000. PubMed ID: 20676082 [TBL] [Abstract][Full Text] [Related]
9. Bacterial flagellar switching: a molecular mechanism directed by the logic of an electric motor. Maiti S; Mitra P J Mol Model; 2018 Sep; 24(10):280. PubMed ID: 30215219 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG. Levenson R; Zhou H; Dahlquist FW Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715 [TBL] [Abstract][Full Text] [Related]
11. Motility protein interactions in the bacterial flagellar motor. Garza AG; Harris-Haller LW; Stoebner RA; Manson MD Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209 [TBL] [Abstract][Full Text] [Related]
12. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. Garza AG; Biran R; Wohlschlegel JA; Manson MD J Mol Biol; 1996 May; 258(2):270-85. PubMed ID: 8627625 [TBL] [Abstract][Full Text] [Related]
13. Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. Irikura VM; Kihara M; Yamaguchi S; Sockett H; Macnab RM J Bacteriol; 1993 Feb; 175(3):802-10. PubMed ID: 8423152 [TBL] [Abstract][Full Text] [Related]
14. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. Gosink KK; Häse CC J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732 [TBL] [Abstract][Full Text] [Related]
15. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Yorimitsu T; Mimaki A; Yakushi T; Homma M J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195 [TBL] [Abstract][Full Text] [Related]
16. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Paul K; Brunstetter D; Titen S; Blair DF Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567 [TBL] [Abstract][Full Text] [Related]
17. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. Lowder BJ; Duyvesteyn MD; Blair DF J Bacteriol; 2005 Aug; 187(16):5640-7. PubMed ID: 16077109 [TBL] [Abstract][Full Text] [Related]
18. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. Lloyd SA; Blair DF J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466 [TBL] [Abstract][Full Text] [Related]
19. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. Brown PN; Hill CP; Blair DF EMBO J; 2002 Jul; 21(13):3225-34. PubMed ID: 12093724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]