These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15126659)

  • 1. Hemodynamic effects of clot entrapment in the TrapEase inferior vena cava filter.
    Leask RL; Johnston KW; Ojha M
    J Vasc Interv Radiol; 2004 May; 15(5):485-90. PubMed ID: 15126659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of the hemodynamic effects of a partial occlusion in a vena cava filter.
    Couch GG; Kim H; Ojha M
    J Vasc Surg; 1997 Apr; 25(4):663-72. PubMed ID: 9129622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of blood flow in the TrapEase inferior vena cava filter.
    Singer MA; Henshaw WD; Wang SL
    J Vasc Interv Radiol; 2009 Jun; 20(6):799-805. PubMed ID: 19406666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter.
    Swaminathan TN; Hu HH; Patel AA
    J Biomech Eng; 2006 Jun; 128(3):360-70. PubMed ID: 16706585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vena cava filter performance based on hemodynamics and reported thrombosis and pulmonary embolism patterns.
    Harlal A; Ojha M; Johnston KW
    J Vasc Interv Radiol; 2007 Jan; 18(1 Pt 1):103-15. PubMed ID: 17296710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro hemodynamic evaluation of a Simon nitinol vena cava filter: possible explanation of IVC occlusion.
    Leask RL; Johnston KW; Ojha M
    J Vasc Interv Radiol; 2001 May; 12(5):613-8. PubMed ID: 11340141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic effects of blood clots trapped by an inferior vena cava filter.
    López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3343. PubMed ID: 32323487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro comparison of the hemodynamics of two inferior vena cava filters.
    Couch GG; Johnston KW; Ojha M
    J Vasc Surg; 2000 Mar; 31(3):539-49. PubMed ID: 10709068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling.
    Stewart SF; Robinson RA; Nelson RA; Malinauskas RA
    Ann Biomed Eng; 2008 Nov; 36(11):1764-81. PubMed ID: 18787955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling blood flow in a tilted inferior vena cava filter: does tilt adversely affect hemodynamics?
    Singer MA; Wang SL
    J Vasc Interv Radiol; 2011 Feb; 22(2):229-35. PubMed ID: 21211992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of hemodynamic performance using novel helical flow vena cava filter design.
    Chen Y; Zhang P; Deng X; Fan Y; Xing Y; Xing N
    Sci Rep; 2017 Jan; 7():40724. PubMed ID: 28112186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hemodynamic analysis of a new retrievable vena cava filter].
    Chen S; Feng H; Li X; Gu J; Wang X; Cao P; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):245-253. PubMed ID: 31016941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing inferior vena cava filter design: A computational fluid dynamics study on strut configuration for enhanced hemodynamic performance and thrombosis reduction.
    Kim BJ; Lee C
    Heliyon; 2024 Jun; 10(11):e32667. PubMed ID: 38912484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling hemodynamics in an unoccluded and partially occluded inferior vena cava under rest and exercise conditions.
    Ren Z; Wang SL; Singer MA
    Med Biol Eng Comput; 2012 Mar; 50(3):277-87. PubMed ID: 22354383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of reverse deployment of cone-shaped vena cava filter on improvements in hemodynamic performance in vena cava.
    Chen Y; Xu Z; Deng X; Yang S; Tan W; Fan Y; Han Y; Xing Y
    Biomed Eng Online; 2021 Feb; 20(1):19. PubMed ID: 33563284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro study of guide wire entrapment in currently available inferior vena cava filters.
    Stavropoulos SW; Itkin M; Trerotola SO
    J Vasc Interv Radiol; 2003 Jul; 14(7):905-10. PubMed ID: 12847198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of clinically available inferior vena cava filters with an in vitro physiologic simulation of the vena cava.
    Simon M; Rabkin DJ; Kleshinski S; Kim D; Ransil BJ
    Radiology; 1993 Dec; 189(3):769-74. PubMed ID: 8234702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of a prolapsed bird's nest filter.
    Shlansky-Goldberg R; Wing CM; LeVeen RF; Cope C
    J Vasc Interv Radiol; 1993; 4(4):505-11. PubMed ID: 8353347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporary inferior vena cava filters: in vitro comparison with permanent IVC filters.
    Stoneham GW; Burbridge BE; Millward SF
    J Vasc Interv Radiol; 1995; 6(5):731-6. PubMed ID: 8541676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an optimal position for inferior vena cava filters: computational modeling of the impact of renal vein inflow with Celect and TrapEase filters.
    Wang SL; Singer MA
    J Vasc Interv Radiol; 2010 Mar; 21(3):367-74; quiz 374. PubMed ID: 20171559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.