BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15126685)

  • 1. Anterograde transport of neurotrophic factors: possible therapeutic implications.
    Caleo M; Cenni MC
    Mol Neurobiol; 2004 Apr; 29(2):179-96. PubMed ID: 15126685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotrophin trafficking by anterograde transport.
    Altar CA; DiStefano PS
    Trends Neurosci; 1998 Oct; 21(10):433-7. PubMed ID: 9786341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system.
    von Bartheld CS; Byers MR; Williams R; Bothwell M
    Nature; 1996 Feb; 379(6568):830-3. PubMed ID: 8587607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterograde axonal transport of glial cell line-derived neurotrophic factor and its receptors in rat hypoglossal nerve.
    Russell FD; Koishi K; Jiang Y; McLennan IS
    Neuroscience; 2000; 97(3):575-80. PubMed ID: 10828539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterograde transport of neurotrophin proteins in the CNS--a reassessment of the neurotrophic hypothesis.
    Conner JM; Lauterborn JC; Gall CM
    Rev Neurosci; 1998; 9(2):91-103. PubMed ID: 9711901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system.
    Spalding KL; Tan MM; Hendry IA; Harvey AR
    Mol Cell Neurosci; 2002 Apr; 19(4):485-500. PubMed ID: 11988017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens.
    von Bartheld CS
    J Neurobiol; 2004 Feb; 58(2):295-314. PubMed ID: 14704960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of multivesicular bodies (MVBs) in the hypoglossal nerve: evidence that neurotrophic factors do not use MVBs for retrograde axonal transport.
    Altick AL; Baryshnikova LM; Vu TQ; von Bartheld CS
    J Comp Neurol; 2009 Jun; 514(6):641-57. PubMed ID: 19363811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases.
    Mufson EJ; Kroin JS; Sendera TJ; Sobreviela T
    Prog Neurobiol; 1999 Feb; 57(4):451-84. PubMed ID: 10080385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-derived BDNF (brain-derived neurotrophic factor) is essential for the survival of developing neurons in the isthmo-optic nucleus.
    Von Bartheld CS; Johnson JE
    J Comp Neurol; 2001 May; 433(4):550-64. PubMed ID: 11304717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of the trophic factors BDNF, NT-4, GDNF, and IGF-I on the isthmo-optic nucleus in chick embryos.
    Janiga TA; Rind HB; von Bartheld CS
    J Neurobiol; 2000 Jun; 43(3):289-303. PubMed ID: 10842241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterograde axonal transport of internalized GDNF in sensory and motor neurons.
    Rind HB; von Bartheld CS
    Neuroreport; 2002 Apr; 13(5):659-64. PubMed ID: 11973466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks.
    von Bartheld CS; Wang X; Butowt R
    Mol Neurobiol; 2001; 24(1-3):1-28. PubMed ID: 11831547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins.
    Matheson CR; Carnahan J; Urich JL; Bocangel D; Zhang TJ; Yan Q
    J Neurobiol; 1997 Jan; 32(1):22-32. PubMed ID: 8989660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms regulating the retrograde axonal transport of neurotrophins.
    Reynolds AJ; Bartlett SE; Hendry IA
    Brain Res Brain Res Rev; 2000 Sep; 33(2-3):169-78. PubMed ID: 11011064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Axonal transport from the nerve ending to the nerve cell body: a pathway for trophic signals and neurotoxins].
    Schwab ME
    Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):7-19. PubMed ID: 6159028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde propagation of GDNF-mediated signals in sympathetic neurons.
    Coulpier M; Ibáñez CF
    Mol Cell Neurosci; 2004 Oct; 27(2):132-9. PubMed ID: 15485769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis.
    Ito K; Enomoto H
    J Biochem; 2016 Aug; 160(2):77-85. PubMed ID: 27318359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrograde transport redux.
    Chao MV
    Neuron; 2003 Jul; 39(1):1-2. PubMed ID: 12848924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial-specific functions in retrograde neuronal signalling.
    Zahavi EE; Maimon R; Perlson E
    Traffic; 2017 Jul; 18(7):415-424. PubMed ID: 28393448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.