These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15127170)

  • 1. The utilization of visual feedback from peripheral and central vision in the control of direction.
    Khan MA; Lawrence GP; Franks IM; Buckolz E
    Exp Brain Res; 2004 Sep; 158(2):241-51. PubMed ID: 15127170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of peripheral and central vision in the control of movement amplitude.
    Lawrence GP; Khan MA; Buckolz E; Oldham AR
    Hum Mov Sci; 2006 Jun; 25(3):326-38. PubMed ID: 16616964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The utilization of visual feedback in the control of movement direction: evidence from a video aiming task.
    Khan MA; Lawrence GP; Franks IM; Elliott D
    Motor Control; 2003 Jul; 7(3):290-303. PubMed ID: 12893959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data.
    Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ
    Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reliance on visual feedback for online and offline processing.
    Lawrence GP; Khan MA; Mourton S; Bernier PM
    Motor Control; 2011 Apr; 15(2):232-46. PubMed ID: 21628727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence of a lower visual field specialization for visuomotor control.
    Binsted G; Heath M
    Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual role of vision in sequential aiming movements.
    Khan MA; Sarteep S; Mottram TM; Lawrence GP; Adam JJ
    Acta Psychol (Amst); 2011 Mar; 136(3):425-31. PubMed ID: 21334583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in visuomotor control between the upper and lower visual fields.
    Khan MA; Lawrence GP
    Exp Brain Res; 2005 Jul; 164(3):395-8. PubMed ID: 15991032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies.
    Elliott D; Dutoy C; Andrew M; Burkitt JJ; Grierson LE; Lyons JL; Hayes SJ; Bennett SJ
    J Mot Behav; 2014; 46(6):433-43. PubMed ID: 25204201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for continuous processing of visual information in a manual video-aiming task.
    Proteau L; Roujoula A; Messier J
    J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching and grasping with restricted peripheral vision.
    González-Alvarez C; Subramanian A; Pardhan S
    Ophthalmic Physiol Opt; 2007 May; 27(3):265-74. PubMed ID: 17470239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of central visual impairment on manual prehension when tasked with transporting-to-place an object accurately to a new location.
    Timmis MA; Pardhan S
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2812-22. PubMed ID: 22467581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual monitoring of goal-directed aiming movements.
    Brière J; Proteau L
    Q J Exp Psychol (Hove); 2017 Apr; 70(4):736-749. PubMed ID: 26902290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?
    Mackrous I; Proteau L
    Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of visual target information on the online control of movements.
    Sarlegna FR; Mutha PK
    Vision Res; 2015 May; 110(Pt B):144-54. PubMed ID: 25038472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of state anxiety on the online and offline control of fast target-directed movements.
    Lawrence GP; Khan MA; Hardy L
    Psychol Res; 2013 Jul; 77(4):422-33. PubMed ID: 22622437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of size and frame of visual field on the accuracy of an aiming movement.
    Coello Y; Grealy MA
    Perception; 1997; 26(3):287-300. PubMed ID: 9282226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online control of discrete action following visual perturbation.
    Hansen S; Elliott D; Tremblay L
    Perception; 2007; 36(2):268-87. PubMed ID: 17402668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.