These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15127218)
1. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering. Dawson JW; Leung FH; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218 [TBL] [Abstract][Full Text] [Related]
2. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects. McMillan GA; Loessin V; Gray JR J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560 [TBL] [Abstract][Full Text] [Related]
3. Role of wing pronation in evasive steering of locusts. Ribak G; Rand D; Weihs D; Ayali A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148 [TBL] [Abstract][Full Text] [Related]
4. Forewing asymmetries during auditory avoidance in flying locusts. Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244 [TBL] [Abstract][Full Text] [Related]
5. Kinematic compensation for wing loss in flying damselflies. Kassner Z; Dafni E; Ribak G J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807 [TBL] [Abstract][Full Text] [Related]
6. Auditory-evoked evasive manoeuvres in free-flying locusts and moths. Dawson JW; Kutsch W; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):69-84. PubMed ID: 14655020 [TBL] [Abstract][Full Text] [Related]
7. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity. Kutsch W; Berger S; Kautz H J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802 [TBL] [Abstract][Full Text] [Related]
8. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects. Jankauski M; Daniel TL; Shen IY Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606 [TBL] [Abstract][Full Text] [Related]
9. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. Balint CN; Dickinson MH J Exp Biol; 2001 Dec; 204(Pt 24):4213-26. PubMed ID: 11815646 [TBL] [Abstract][Full Text] [Related]
10. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
11. EMG spike time difference based feedback control. Butala J; Arkles A; Gray JR Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6130-3. PubMed ID: 18003414 [TBL] [Abstract][Full Text] [Related]
12. Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? Walker SM; Thomas AL; Taylor GK J R Soc Interface; 2009 Sep; 6(38):735-47. PubMed ID: 19091683 [TBL] [Abstract][Full Text] [Related]
13. Wingbeat kinematics and motor control of yaw turns in Anna's hummingbirds (Calypte anna). Altshuler DL; Quicazán-Rubio EM; Segre PS; Middleton KM J Exp Biol; 2012 Dec; 215(Pt 23):4070-84. PubMed ID: 22933610 [TBL] [Abstract][Full Text] [Related]
14. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight. Li C; Dong H Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781 [TBL] [Abstract][Full Text] [Related]
15. Turning manoeuvres in free-flying locusts: high-speed video-monitoring. Berger S; Kutsch W J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):127-38. PubMed ID: 12975801 [TBL] [Abstract][Full Text] [Related]
16. Aerodynamic characteristics along the wing span of a dragonfly Hefler C; Qiu H; Shyy W J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128 [TBL] [Abstract][Full Text] [Related]
18. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). Tu MS; Dickinson MH J Comp Physiol A; 1996 Jun; 178(6):813-30. PubMed ID: 8667294 [TBL] [Abstract][Full Text] [Related]
19. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli. Chan RW; Gabbiani F J Exp Biol; 2013 Feb; 216(Pt 4):641-55. PubMed ID: 23364572 [TBL] [Abstract][Full Text] [Related]
20. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli. Wang H; Ando N; Kanzaki R J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]