These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 15127301)
1. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model. Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301 [TBL] [Abstract][Full Text] [Related]
2. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations. Bohn A; Hinderlich S; Hütt MT; Kaiser F; Lüttge U Biol Chem; 2003 May; 384(5):721-8. PubMed ID: 12817468 [TBL] [Abstract][Full Text] [Related]
3. Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier. Duarte HM; Jakovljevic I; Kaiser F; Lüttge U Planta; 2005 Apr; 220(6):809-16. PubMed ID: 15843962 [TBL] [Abstract][Full Text] [Related]
4. Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana. Wyka TP; Lüttge UE J Exp Bot; 2003 May; 54(386):1471-9. PubMed ID: 12709493 [TBL] [Abstract][Full Text] [Related]
5. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier. Wyka TP; Duarte HM; Lüttge UE Plant Biol (Stuttg); 2005 Mar; 7(2):176-81. PubMed ID: 15822013 [TBL] [Abstract][Full Text] [Related]
6. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. von Caemmerer S; Griffiths H Plant Cell Environ; 2009 May; 32(5):567-76. PubMed ID: 19210641 [TBL] [Abstract][Full Text] [Related]
7. Endogenous rhythms and chaos in crassulacean acid metabolism. Lüttge U; Beck F Planta; 1992 Aug; 188(1):28-38. PubMed ID: 24178196 [TBL] [Abstract][Full Text] [Related]
8. Tansley Review No. 37 Circadian rhythms: their origin and control. Wilkins MB New Phytol; 1992 Jul; 121(3):347-375. PubMed ID: 33874151 [TBL] [Abstract][Full Text] [Related]
10. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. Owen NA; Griffiths H New Phytol; 2013 Dec; 200(4):1116-31. PubMed ID: 23992169 [TBL] [Abstract][Full Text] [Related]
11. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana. Wild B; Wanek W; Postl W; Richter A J Exp Bot; 2010 Mar; 61(5):1375-83. PubMed ID: 20159885 [TBL] [Abstract][Full Text] [Related]
12. Circadian rhythms in crassulacean acid metabolism: phase relationships between gas exchange, leaf water relations and malate metabolism in Kalanchoë daigremontiana. Buchanan-Bollig IC; Smith JA Planta; 1984 Jun; 161(4):314-9. PubMed ID: 24253720 [TBL] [Abstract][Full Text] [Related]
13. On the Mechanism of Reinitiation of Endogenous Crassulacean Acid Metabolism Rhythm by Temperature Changes. Grams T; Borland AM; Roberts A; Griffiths H; Beck F; Luttge U Plant Physiol; 1997 Apr; 113(4):1309-1317. PubMed ID: 12223675 [TBL] [Abstract][Full Text] [Related]
14. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766 [TBL] [Abstract][Full Text] [Related]
15. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle. Griffiths H; Cousins AB; Badger MR; von Caemmerer S Plant Physiol; 2007 Feb; 143(2):1055-67. PubMed ID: 17142488 [TBL] [Abstract][Full Text] [Related]
16. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Hafke JB; Hafke Y; Smith JA; Lüttge U; Thiel G Plant J; 2003 Jul; 35(1):116-28. PubMed ID: 12834407 [TBL] [Abstract][Full Text] [Related]
17. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana. Gotoh E; Oiwamoto K; Inoue SI; Shimazaki KI; Doi M J Exp Bot; 2019 Feb; 70(4):1367-1374. PubMed ID: 30576518 [TBL] [Abstract][Full Text] [Related]
18. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition. Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309 [TBL] [Abstract][Full Text] [Related]
19. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata. Chen LS; Lin Q; Nose A J Exp Bot; 2002 Feb; 53(367):341-50. PubMed ID: 11807138 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers. Pantoja O; Smith JA J Membr Biol; 2002 Mar; 186(1):31-42. PubMed ID: 11891587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]