BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1362 related articles for article (PubMed ID: 15127396)

  • 1. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery.
    El-Ghannam A; Ning CQ; Mehta J
    J Biomed Mater Res A; 2004 Dec; 71(3):377-90. PubMed ID: 15470721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro.
    El-Ghannam A; Ning CQ
    J Biomed Mater Res A; 2006 Feb; 76(2):386-97. PubMed ID: 16270343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone engineering of the rabbit ulna.
    El-Ghannam A; Cunningham L; Pienkowski D; Hart A
    J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique.
    El-Ghannam A; Hart A; White D; Cunningham L
    J Biomed Mater Res A; 2013 Oct; 101(10):2851-61. PubMed ID: 23504981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.
    Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE
    Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A; Amin H; Nasr T; Shama A
    Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression.
    Gupta G; Kirakodu S; El-Ghannam A
    J Biomed Mater Res A; 2007 Feb; 80(2):486-96. PubMed ID: 17019725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New macroporous calcium phosphate glass ceramic for guided bone regeneration.
    Navarro M; del Valle S; Martínez S; Zeppetelli S; Ambrosio L; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(18):4233-41. PubMed ID: 15046913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.
    Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM
    Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.