These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 15127896)
1. Modelling individual plant growth at a variable mean density or at a specific spatial setting. Damgaard C C R Biol; 2004 Mar; 327(3):255-60. PubMed ID: 15127896 [TBL] [Abstract][Full Text] [Related]
2. The roles of spatial pattern and size variation in shaping height inequality of plant population. Chen SY; Chen ZL; Guo P; Ding CC; Wang YX; Wang XT; Zhang JL; Jia P; Wang G; Xiao S Bull Math Biol; 2014 Feb; 76(2):476-85. PubMed ID: 24500062 [TBL] [Abstract][Full Text] [Related]
3. An ESS for the height of a plant population, or an optimal height for an individual?--Rethinking game-theoretic models for plant height. Xiao S; Chen SY; Wang G Bull Math Biol; 2006 May; 68(4):957-67. PubMed ID: 16802091 [TBL] [Abstract][Full Text] [Related]
4. Functional-structural plant models: a growing paradigm for plant studies. Sievänen R; Godin C; DeJong TM; Nikinmaa E Ann Bot; 2014 Sep; 114(4):599-603. PubMed ID: 25469374 [TBL] [Abstract][Full Text] [Related]
6. The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Weiner J; Stoll P; Muller-Landau H; Jasentuliyana A Am Nat; 2001 Oct; 158(4):438-50. PubMed ID: 18707338 [TBL] [Abstract][Full Text] [Related]
7. A single theory explains two empirical laws applicable to plant populations. Kobayashi Y; Kikuzawa K J Theor Biol; 2000 Jul; 205(2):253-60. PubMed ID: 10873436 [TBL] [Abstract][Full Text] [Related]
8. Shedding light on plant competition: modelling the influence of plant morphology on light capture (and vice versa). Clark B; Bullock S J Theor Biol; 2007 Jan; 244(2):208-17. PubMed ID: 16978653 [TBL] [Abstract][Full Text] [Related]
9. Cellular basis of growth in plants: geometry matters. Kierzkowski D; Routier-Kierzkowska AL Curr Opin Plant Biol; 2019 Feb; 47():56-63. PubMed ID: 30308452 [TBL] [Abstract][Full Text] [Related]
10. Plant Size and Competitive Dynamics along Nutrient Gradients. Goldberg DE; Martina JP; Elgersma KJ; Currie WS Am Nat; 2017 Aug; 190(2):229-243. PubMed ID: 28731795 [TBL] [Abstract][Full Text] [Related]
14. ContentSnapshots. Plant growth modelling and applications. Ann Bot; 2008 May; 101(8):2 p preceding 1053. PubMed ID: 18448449 [No Abstract] [Full Text] [Related]
15. Model of annual plants dynamics with facilitation and competition. Droz M; Pękalski A J Theor Biol; 2013 Oct; 335():1-12. PubMed ID: 23791851 [TBL] [Abstract][Full Text] [Related]
16. Plant growth and architectural modelling and its applications. Preface. Guo Y; Fourcaud T; Jaeger M; Zhang X; Li B Ann Bot; 2011 Apr; 107(5):723-7. PubMed ID: 21638797 [TBL] [Abstract][Full Text] [Related]
17. A mathematical model for storage and recall functions in plants. Demongeot J; Thomas R; Thellier M C R Acad Sci III; 2000 Jan; 323(1):93-7. PubMed ID: 10742914 [TBL] [Abstract][Full Text] [Related]
18. The plant in the labyrinth: Adaptive growth and branching in heterogeneous environments. Oborny B; Benedek V; Englert P; Gulyás M; Hubai AG J Theor Biol; 2017 Jan; 412():146-153. PubMed ID: 27826119 [TBL] [Abstract][Full Text] [Related]
19. Phyllotaxis: the status of the field. Jean RV Math Biosci; 1995 Jun; 127(2):181-206. PubMed ID: 7795318 [TBL] [Abstract][Full Text] [Related]
20. Creating phyllotaxis: the stack-and-drag model. Van Der Linden FM Math Biosci; 1996 Apr; 133(1):21-50. PubMed ID: 8868571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]