BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15128110)

  • 1. In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring.
    Ballerstadt R; Polak A; Beuhler A; Frye J
    Biosens Bioelectron; 2004 Mar; 19(8):905-14. PubMed ID: 15128110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and testing of a fluorescence glucose sensor which incorporates a bioinductive material.
    Chen HC; Ahmed J
    Biomed Sci Instrum; 2004; 40():149-54. PubMed ID: 15133950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-resolved near-infrared fluorescence assay for glucose: opportunities for trans-dermal sensing.
    Rolinski OJ; Birch DJ; McCartney LJ; Pickup JC
    J Photochem Photobiol B; 2000 Jan; 54(1):26-34. PubMed ID: 10739140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Gowda A
    Biosens Bioelectron; 2014 Nov; 61():280-4. PubMed ID: 24906086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "On-off" switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing.
    Huang J; Zhang L; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Mar; 41():430-5. PubMed ID: 23026685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy.
    Cummins BM; Garza JT; Coté GL
    Anal Chem; 2013 Jun; 85(11):5397-404. PubMed ID: 23627407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose response of near-infrared alginate-based microsphere sensors under dynamic reversible conditions.
    Chaudhary A; Harma H; Hanninen P; McShane MJ; Srivastava R
    Diabetes Technol Ther; 2011 Aug; 13(8):827-35. PubMed ID: 21568749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.
    Tang B; Cao L; Xu K; Zhuo L; Ge J; Li Q; Yu L
    Chemistry; 2008; 14(12):3637-44. PubMed ID: 18318025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence resonance energy transfer-based near-infrared fluorescence sensor for glucose monitoring.
    Ballerstadt R; Gowda A; McNichols R
    Diabetes Technol Ther; 2004 Apr; 6(2):191-200. PubMed ID: 15117585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose.
    Yum K; Ahn JH; McNicholas TP; Barone PW; Mu B; Kim JH; Jain RM; Strano MS
    ACS Nano; 2012 Jan; 6(1):819-30. PubMed ID: 22133474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.
    Peng J; Wang Y; Wang J; Zhou X; Liu Z
    Biosens Bioelectron; 2011 Oct; 28(1):414-20. PubMed ID: 21852101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor.
    Garden SR; Doellgast GJ; Killham KS; Strachan NJ
    Biosens Bioelectron; 2004 Feb; 19(7):737-40. PubMed ID: 14709392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Optical Nanosensors for Continuous Detection of Glucose.
    Le LV; Chendke GS; Gamsey S; Wisniewski N; Desai TA
    J Diabetes Sci Technol; 2020 Mar; 14(2):204-211. PubMed ID: 31709808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future aspects of bioprocess monitoring.
    Becker T; Hitzmann B; Muffler K; Pörtner R; Reardon KF; Stahl F; Ulber R
    Adv Biochem Eng Biotechnol; 2007; 105():249-93. PubMed ID: 17408086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical sensor based on fluorescent quenching and pulsed blue LED excitation for long-term monitoring of dissolved oxygen in NASA space bioreactors.
    Gao FG; Fay JM; Mathew G; Jeevarajan AS; Anderson MM
    J Biomed Opt; 2005; 10(5):054005. PubMed ID: 16292965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concanavalin A for in vivo glucose sensing: a biotoxicity review.
    Ballerstadt R; Evans C; McNichols R; Gowda A
    Biosens Bioelectron; 2006 Aug; 22(2):275-84. PubMed ID: 16488598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical performance of a low cost near infrared sensor for continuous glucose monitoring applied with subcutaneous microdialysis.
    Ben Mohammadi L; Klotzbuecher T; Sigloch S; Welzel K; Goeddel M; Pieber TR; Schaupp L
    Biomed Microdevices; 2015 Aug; 17(4):73. PubMed ID: 26141039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.